响应面法动态扩展有限元法中Newmark方法参数对误差的影响

Y. Karimi, S. Rashahmadi, R. Hasanzadeh
{"title":"响应面法动态扩展有限元法中Newmark方法参数对误差的影响","authors":"Y. Karimi, S. Rashahmadi, R. Hasanzadeh","doi":"10.5829/ije.2018.31.01a.08","DOIUrl":null,"url":null,"abstract":"The Newmark method is an effective method for numerical time integration in dynamic problems. The results of Newmark method are function of its parameters (β, γ and ∆t). In this paper, a stationary mode I dynamic crack problem is coded in extended finite element method )XFEM( framework in Matlab software and results are verified with analytical solution. This paper focuses on effects of main parameters in Newmark method for dynamic XFEM problems. Also use of the response surface method (RSM) a regression model is presented for estimating error of dynamic stress intensity factors (DSIF) with high validity according to results of analysis of variance (ANOVA). This work enables one to understand the effect of Newmark parameters on error of DSIFs and to find optimum β and γ for a determined number of time steps (N). This procedure is highly effective in order to  manage the computational cost and enhance the accuracy at the desired domain. The effect of the considered parameters on error, is investigated using RSM in Minitab software and optimum state for minimization of errors is illustrated.","PeriodicalId":416886,"journal":{"name":"International journal of engineering. Transactions A: basics","volume":"48 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Effects of Newmark Method Parameters on Errors in Dynamic Extended Finite Element Method Using Response Surface Method\",\"authors\":\"Y. Karimi, S. Rashahmadi, R. Hasanzadeh\",\"doi\":\"10.5829/ije.2018.31.01a.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Newmark method is an effective method for numerical time integration in dynamic problems. The results of Newmark method are function of its parameters (β, γ and ∆t). In this paper, a stationary mode I dynamic crack problem is coded in extended finite element method )XFEM( framework in Matlab software and results are verified with analytical solution. This paper focuses on effects of main parameters in Newmark method for dynamic XFEM problems. Also use of the response surface method (RSM) a regression model is presented for estimating error of dynamic stress intensity factors (DSIF) with high validity according to results of analysis of variance (ANOVA). This work enables one to understand the effect of Newmark parameters on error of DSIFs and to find optimum β and γ for a determined number of time steps (N). This procedure is highly effective in order to  manage the computational cost and enhance the accuracy at the desired domain. The effect of the considered parameters on error, is investigated using RSM in Minitab software and optimum state for minimization of errors is illustrated.\",\"PeriodicalId\":416886,\"journal\":{\"name\":\"International journal of engineering. Transactions A: basics\",\"volume\":\"48 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of engineering. Transactions A: basics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5829/ije.2018.31.01a.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of engineering. Transactions A: basics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/ije.2018.31.01a.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Newmark法是求解动态问题数值时间积分的一种有效方法。Newmark方法的结果是其参数(β, γ和∆t)的函数。本文在Matlab软件中对一类平稳型动力裂纹问题进行了扩展有限元(XFEM)框架编码,并用解析解对结果进行了验证。本文重点研究了动态XFEM问题Newmark法中主要参数的影响。根据方差分析(ANOVA)的结果,利用响应面法(RSM)建立了高效度动态应力强度因子(DSIF)误差估计的回归模型。这项工作使人们能够理解Newmark参数对DSIFs误差的影响,并在确定的时间步长(N)内找到最佳的β和γ。为了管理计算成本并提高所需域的精度,该过程非常有效。利用Minitab软件中的RSM分析了所考虑的参数对误差的影响,并给出了误差最小化的最佳状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effects of Newmark Method Parameters on Errors in Dynamic Extended Finite Element Method Using Response Surface Method
The Newmark method is an effective method for numerical time integration in dynamic problems. The results of Newmark method are function of its parameters (β, γ and ∆t). In this paper, a stationary mode I dynamic crack problem is coded in extended finite element method )XFEM( framework in Matlab software and results are verified with analytical solution. This paper focuses on effects of main parameters in Newmark method for dynamic XFEM problems. Also use of the response surface method (RSM) a regression model is presented for estimating error of dynamic stress intensity factors (DSIF) with high validity according to results of analysis of variance (ANOVA). This work enables one to understand the effect of Newmark parameters on error of DSIFs and to find optimum β and γ for a determined number of time steps (N). This procedure is highly effective in order to  manage the computational cost and enhance the accuracy at the desired domain. The effect of the considered parameters on error, is investigated using RSM in Minitab software and optimum state for minimization of errors is illustrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信