Dr. P. Ravichandran, Dr. J. Dafni Rose, K. Vijayakumar
{"title":"基于时间序列和社会情绪分析的深度神经网络股票趋势预测","authors":"Dr. P. Ravichandran, Dr. J. Dafni Rose, K. Vijayakumar","doi":"10.4108/EAI.16-5-2020.2304210","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an approach towards predicting the trend of stock price values by analyzing the relevant words occurring in social media like Twitter and by performing a time series analysis of the performance of the stock over the years. We obtain training data and train them separately against normalized values of stock prices themselves using neural networks and obtain the desired results by using the outputs of these separate approaches as the training data for another separate neural network that predicts the trend in the stock’s future pricing along with the values with a certain degree of accuracy.","PeriodicalId":274686,"journal":{"name":"Proceedings of the Fist International Conference on Advanced Scientific Innovation in Science, Engineering and Technology, ICASISET 2020, 16-17 May 2020, Chennai, India","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Stock Trend Prediction using Deep Neural Networks in Time Series and Social Sentiment Analysis\",\"authors\":\"Dr. P. Ravichandran, Dr. J. Dafni Rose, K. Vijayakumar\",\"doi\":\"10.4108/EAI.16-5-2020.2304210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an approach towards predicting the trend of stock price values by analyzing the relevant words occurring in social media like Twitter and by performing a time series analysis of the performance of the stock over the years. We obtain training data and train them separately against normalized values of stock prices themselves using neural networks and obtain the desired results by using the outputs of these separate approaches as the training data for another separate neural network that predicts the trend in the stock’s future pricing along with the values with a certain degree of accuracy.\",\"PeriodicalId\":274686,\"journal\":{\"name\":\"Proceedings of the Fist International Conference on Advanced Scientific Innovation in Science, Engineering and Technology, ICASISET 2020, 16-17 May 2020, Chennai, India\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fist International Conference on Advanced Scientific Innovation in Science, Engineering and Technology, ICASISET 2020, 16-17 May 2020, Chennai, India\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/EAI.16-5-2020.2304210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fist International Conference on Advanced Scientific Innovation in Science, Engineering and Technology, ICASISET 2020, 16-17 May 2020, Chennai, India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/EAI.16-5-2020.2304210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stock Trend Prediction using Deep Neural Networks in Time Series and Social Sentiment Analysis
In this paper, we propose an approach towards predicting the trend of stock price values by analyzing the relevant words occurring in social media like Twitter and by performing a time series analysis of the performance of the stock over the years. We obtain training data and train them separately against normalized values of stock prices themselves using neural networks and obtain the desired results by using the outputs of these separate approaches as the training data for another separate neural network that predicts the trend in the stock’s future pricing along with the values with a certain degree of accuracy.