基于ELLB存储格式的GPU稀疏矩阵向量乘法优化

Haonan Chen, Zhuowei Wang, Lianglun Cheng
{"title":"基于ELLB存储格式的GPU稀疏矩阵向量乘法优化","authors":"Haonan Chen, Zhuowei Wang, Lianglun Cheng","doi":"10.1145/3587828.3587834","DOIUrl":null,"url":null,"abstract":"ELLPACK(ELL) sparse matrix storage format has problems such as high storage consumption and low efficiency of sparse matrix vector multiplication(SpMV). To solve this problem, we propose a Graphic Processing Unit(GPU)-based efficient ELLPACK-Block(ELLB) sparse matrix storage format. Based on the original ELL storage format, this format adaptively divides the matrix into blocks according to the average number of non-zero elements in each row, and uses auxiliary matrices to improve the efficiency of SpMV solution. We use the ELLB storage format to solve the SpMV problem for different matrices. The experimental results show that compared with the Perfect Compressed Sparse Row(PCSR) format, the ELLB sparse matrix storage format saves 50 of the memory space, and the average efficiency of solving SpMV is increased by 7 times; compared with the Effective Compressed Sparse Row(ECSR) format, the memory space usage is increased by 25, but the solution of SpMV The efficiency is increased by an average of 7.65 times.","PeriodicalId":340917,"journal":{"name":"Proceedings of the 2023 12th International Conference on Software and Computer Applications","volume":"35 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GPU Sparse Matrix Vector Multiplication Optimization Based on ELLB Storage Format\",\"authors\":\"Haonan Chen, Zhuowei Wang, Lianglun Cheng\",\"doi\":\"10.1145/3587828.3587834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ELLPACK(ELL) sparse matrix storage format has problems such as high storage consumption and low efficiency of sparse matrix vector multiplication(SpMV). To solve this problem, we propose a Graphic Processing Unit(GPU)-based efficient ELLPACK-Block(ELLB) sparse matrix storage format. Based on the original ELL storage format, this format adaptively divides the matrix into blocks according to the average number of non-zero elements in each row, and uses auxiliary matrices to improve the efficiency of SpMV solution. We use the ELLB storage format to solve the SpMV problem for different matrices. The experimental results show that compared with the Perfect Compressed Sparse Row(PCSR) format, the ELLB sparse matrix storage format saves 50 of the memory space, and the average efficiency of solving SpMV is increased by 7 times; compared with the Effective Compressed Sparse Row(ECSR) format, the memory space usage is increased by 25, but the solution of SpMV The efficiency is increased by an average of 7.65 times.\",\"PeriodicalId\":340917,\"journal\":{\"name\":\"Proceedings of the 2023 12th International Conference on Software and Computer Applications\",\"volume\":\"35 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 12th International Conference on Software and Computer Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3587828.3587834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 12th International Conference on Software and Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3587828.3587834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

ELLPACK(ELL)稀疏矩阵存储格式存在存储空间消耗大、稀疏矩阵向量乘法(SpMV)效率低等问题。为了解决这个问题,我们提出了一种基于图形处理单元(GPU)的高效ELLPACK-Block(ELLB)稀疏矩阵存储格式。该格式在原有ELL存储格式的基础上,根据每行非零元素的平均个数自适应将矩阵划分为块,并使用辅助矩阵提高SpMV求解的效率。我们使用ELLB存储格式来解决不同矩阵的SpMV问题。实验结果表明,与完全压缩稀疏行(PCSR)格式相比,ELLB稀疏矩阵存储格式节省了50%的存储空间,求解SpMV的平均效率提高了7倍;与ECSR (Effective Compressed Sparse Row)格式相比,SpMV格式的内存空间利用率提高了25倍,而SpMV格式的效率平均提高了7.65倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU Sparse Matrix Vector Multiplication Optimization Based on ELLB Storage Format
ELLPACK(ELL) sparse matrix storage format has problems such as high storage consumption and low efficiency of sparse matrix vector multiplication(SpMV). To solve this problem, we propose a Graphic Processing Unit(GPU)-based efficient ELLPACK-Block(ELLB) sparse matrix storage format. Based on the original ELL storage format, this format adaptively divides the matrix into blocks according to the average number of non-zero elements in each row, and uses auxiliary matrices to improve the efficiency of SpMV solution. We use the ELLB storage format to solve the SpMV problem for different matrices. The experimental results show that compared with the Perfect Compressed Sparse Row(PCSR) format, the ELLB sparse matrix storage format saves 50 of the memory space, and the average efficiency of solving SpMV is increased by 7 times; compared with the Effective Compressed Sparse Row(ECSR) format, the memory space usage is increased by 25, but the solution of SpMV The efficiency is increased by an average of 7.65 times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信