从事务性数据库中挖掘感兴趣的项目集

K. Sumangali, R. Aishwarya, E. Hemavathi, A. Niraimathi
{"title":"从事务性数据库中挖掘感兴趣的项目集","authors":"K. Sumangali, R. Aishwarya, E. Hemavathi, A. Niraimathi","doi":"10.1109/ICCIC.2014.7238414","DOIUrl":null,"url":null,"abstract":"Association rule mining is a standard technique used for finding the relationships among the itemsets in a database. The method of extracting the frequent itemsets from the database using existing algorithms has several disadvantages such as generation of large number of candidate itemsets, increase in computational time and database scan. With this aim, the paper proposes Mining Interesting Itemsets (MIIS) algorithm which combines the features of partition algorithm and FP tree which reduces the database scan and produces the reduced itemsets from the transactions. The reduced itemsets are validated using the mathematical measures.","PeriodicalId":187874,"journal":{"name":"2014 IEEE International Conference on Computational Intelligence and Computing Research","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mining interesting itemsets from transactional database\",\"authors\":\"K. Sumangali, R. Aishwarya, E. Hemavathi, A. Niraimathi\",\"doi\":\"10.1109/ICCIC.2014.7238414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Association rule mining is a standard technique used for finding the relationships among the itemsets in a database. The method of extracting the frequent itemsets from the database using existing algorithms has several disadvantages such as generation of large number of candidate itemsets, increase in computational time and database scan. With this aim, the paper proposes Mining Interesting Itemsets (MIIS) algorithm which combines the features of partition algorithm and FP tree which reduces the database scan and produces the reduced itemsets from the transactions. The reduced itemsets are validated using the mathematical measures.\",\"PeriodicalId\":187874,\"journal\":{\"name\":\"2014 IEEE International Conference on Computational Intelligence and Computing Research\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Computational Intelligence and Computing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIC.2014.7238414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Computational Intelligence and Computing Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIC.2014.7238414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

关联规则挖掘是一种用于查找数据库中项目集之间关系的标准技术。使用现有算法从数据库中提取频繁项集的方法存在产生大量候选项集、增加计算时间和数据库扫描等缺点。为此,本文提出了挖掘兴趣项集(MIIS)算法,该算法结合了分区算法和FP树的特点,减少了数据库扫描,并从事务中产生约简的项集。利用数学方法对简化后的项目集进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining interesting itemsets from transactional database
Association rule mining is a standard technique used for finding the relationships among the itemsets in a database. The method of extracting the frequent itemsets from the database using existing algorithms has several disadvantages such as generation of large number of candidate itemsets, increase in computational time and database scan. With this aim, the paper proposes Mining Interesting Itemsets (MIIS) algorithm which combines the features of partition algorithm and FP tree which reduces the database scan and produces the reduced itemsets from the transactions. The reduced itemsets are validated using the mathematical measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信