Textgraphs-15共享任务系统描述:匹配专家评级的多跳推理解释再生

Sureshkumar Vivek Kalyan, Sam Witteveen, Martin Andrews
{"title":"Textgraphs-15共享任务系统描述:匹配专家评级的多跳推理解释再生","authors":"Sureshkumar Vivek Kalyan, Sam Witteveen, Martin Andrews","doi":"10.18653/V1/11.TEXTGRAPHS-1.20","DOIUrl":null,"url":null,"abstract":"Creating explanations for answers to science questions is a challenging task that requires multi-hop inference over a large set of fact sentences. This year, to refocus the Textgraphs Shared Task on the problem of gathering relevant statements (rather than solely finding a single ‘correct path’), the WorldTree dataset was augmented with expert ratings of ‘relevance’ of statements to each overall explanation. Our system, which achieved second place on the Shared Task leaderboard, combines initial statement retrieval; language models trained to predict the relevance scores; and ensembling of a number of the resulting rankings. Our code implementation is made available at https://github.com/mdda/worldtree_corpus/tree/textgraphs_2021","PeriodicalId":332938,"journal":{"name":"Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Textgraphs-15 Shared Task System Description : Multi-Hop Inference Explanation Regeneration by Matching Expert Ratings\",\"authors\":\"Sureshkumar Vivek Kalyan, Sam Witteveen, Martin Andrews\",\"doi\":\"10.18653/V1/11.TEXTGRAPHS-1.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Creating explanations for answers to science questions is a challenging task that requires multi-hop inference over a large set of fact sentences. This year, to refocus the Textgraphs Shared Task on the problem of gathering relevant statements (rather than solely finding a single ‘correct path’), the WorldTree dataset was augmented with expert ratings of ‘relevance’ of statements to each overall explanation. Our system, which achieved second place on the Shared Task leaderboard, combines initial statement retrieval; language models trained to predict the relevance scores; and ensembling of a number of the resulting rankings. Our code implementation is made available at https://github.com/mdda/worldtree_corpus/tree/textgraphs_2021\",\"PeriodicalId\":332938,\"journal\":{\"name\":\"Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/V1/11.TEXTGRAPHS-1.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/V1/11.TEXTGRAPHS-1.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为科学问题的答案创建解释是一项具有挑战性的任务,它需要对大量事实句进行多跳推理。今年,为了将Textgraphs共享任务的重点重新放在收集相关语句的问题上(而不是仅仅找到一条“正确的路径”),WorldTree数据集增加了专家对语句与每个整体解释的“相关性”评级。我们的系统在共享任务排行榜上排名第二,它结合了初始语句检索;语言模型训练预测相关分数;并综合了一些结果排名。我们的代码实现可以在https://github.com/mdda/worldtree_corpus/tree/textgraphs_2021上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Textgraphs-15 Shared Task System Description : Multi-Hop Inference Explanation Regeneration by Matching Expert Ratings
Creating explanations for answers to science questions is a challenging task that requires multi-hop inference over a large set of fact sentences. This year, to refocus the Textgraphs Shared Task on the problem of gathering relevant statements (rather than solely finding a single ‘correct path’), the WorldTree dataset was augmented with expert ratings of ‘relevance’ of statements to each overall explanation. Our system, which achieved second place on the Shared Task leaderboard, combines initial statement retrieval; language models trained to predict the relevance scores; and ensembling of a number of the resulting rankings. Our code implementation is made available at https://github.com/mdda/worldtree_corpus/tree/textgraphs_2021
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信