乳糖基脂肪酸单酯:合成、抗菌活性和增强渗透性的研究

S. Lucarini
{"title":"乳糖基脂肪酸单酯:合成、抗菌活性和增强渗透性的研究","authors":"S. Lucarini","doi":"10.3390/ecmc2019-06340","DOIUrl":null,"url":null,"abstract":"We present the synthesis and the in vitro assaying of a series of lactose-based non-ionic surfactants, highlighting the relationship between their structure and biological effect. Using tensiometric measurements the critical micelle concentrations (CMCs) of the surfactants were determined and demonstrate that increasing hydrophobic chain length reduces surfactant CMC. In vitro testing on Caco-2 intestinal and Calu-3 airway epithelia revealed that cytotoxicity is present, for most of the surfactants, at concentrations greater than their CMCs. Importantly, through the culture of epithelial monolayers on Transwell® supports, the surfactants demonstrate the ability to reversibly modulate transepithelial electrical resistance (TEER), and thus open tight junctions, at non-toxic concentrations. The surfactants were then tested for their ability to improve the in vitro permeability of Ovalbumin and Dextran, confirming their potential application as safe permeability enhancers in vivo. Moreover, the synthesized compounds exhibit antimicrobial activity versus eight pathogenic species belonging to Gram-positive, Gram-negative microorganisms and fungi.","PeriodicalId":312909,"journal":{"name":"Proceedings of 5th International Electronic Conference on Medicinal Chemistry","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lactose-based Fatty Acid Monoesters: Synthesis, antimicrobial activity and permeability enhancement studies\",\"authors\":\"S. Lucarini\",\"doi\":\"10.3390/ecmc2019-06340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the synthesis and the in vitro assaying of a series of lactose-based non-ionic surfactants, highlighting the relationship between their structure and biological effect. Using tensiometric measurements the critical micelle concentrations (CMCs) of the surfactants were determined and demonstrate that increasing hydrophobic chain length reduces surfactant CMC. In vitro testing on Caco-2 intestinal and Calu-3 airway epithelia revealed that cytotoxicity is present, for most of the surfactants, at concentrations greater than their CMCs. Importantly, through the culture of epithelial monolayers on Transwell® supports, the surfactants demonstrate the ability to reversibly modulate transepithelial electrical resistance (TEER), and thus open tight junctions, at non-toxic concentrations. The surfactants were then tested for their ability to improve the in vitro permeability of Ovalbumin and Dextran, confirming their potential application as safe permeability enhancers in vivo. Moreover, the synthesized compounds exhibit antimicrobial activity versus eight pathogenic species belonging to Gram-positive, Gram-negative microorganisms and fungi.\",\"PeriodicalId\":312909,\"journal\":{\"name\":\"Proceedings of 5th International Electronic Conference on Medicinal Chemistry\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 5th International Electronic Conference on Medicinal Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ecmc2019-06340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 5th International Electronic Conference on Medicinal Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ecmc2019-06340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一系列以乳糖为基础的非离子表面活性剂的合成和体外分析,重点介绍了它们的结构与生物效应的关系。用张力法测定了表面活性剂的临界胶束浓度(CMC),结果表明疏水链长的增加会降低表面活性剂的临界胶束浓度。对Caco-2肠上皮和Calu-3气道上皮的体外测试显示,大多数表面活性剂在浓度高于其cmc时存在细胞毒性。重要的是,通过在Transwell载体上培养上皮单层,表面活性剂显示出可逆调节上皮电阻(TEER)的能力,从而在无毒浓度下打开紧密连接。然后测试了表面活性剂提高卵清蛋白和葡聚糖的体外渗透性的能力,证实了它们在体内作为安全的渗透性增强剂的潜在应用。此外,合成的化合物对属于革兰氏阳性、革兰氏阴性微生物和真菌的八种致病性物种具有抗菌活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lactose-based Fatty Acid Monoesters: Synthesis, antimicrobial activity and permeability enhancement studies
We present the synthesis and the in vitro assaying of a series of lactose-based non-ionic surfactants, highlighting the relationship between their structure and biological effect. Using tensiometric measurements the critical micelle concentrations (CMCs) of the surfactants were determined and demonstrate that increasing hydrophobic chain length reduces surfactant CMC. In vitro testing on Caco-2 intestinal and Calu-3 airway epithelia revealed that cytotoxicity is present, for most of the surfactants, at concentrations greater than their CMCs. Importantly, through the culture of epithelial monolayers on Transwell® supports, the surfactants demonstrate the ability to reversibly modulate transepithelial electrical resistance (TEER), and thus open tight junctions, at non-toxic concentrations. The surfactants were then tested for their ability to improve the in vitro permeability of Ovalbumin and Dextran, confirming their potential application as safe permeability enhancers in vivo. Moreover, the synthesized compounds exhibit antimicrobial activity versus eight pathogenic species belonging to Gram-positive, Gram-negative microorganisms and fungi.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信