重要癌症风险因子提取:一种关联规则发现方法

J. Nahar, K. Tickle
{"title":"重要癌症风险因子提取:一种关联规则发现方法","authors":"J. Nahar, K. Tickle","doi":"10.1109/ICCITECHN.2008.4803102","DOIUrl":null,"url":null,"abstract":"Cancer is the top most death threat for human life all over the world. Current research in the cancer area is still struggling to provide better support to a cancer patient. In this research our aim is to identify the significant risk factors for particular types of cancer. First, we constructed a risk factor data set through an extensive literature review of bladder, breast, cervical, lung, prostate and skin cancer. We further employed three association rule mining algorithms, apriori, predictive apriori and Tertius algorithm in order to discover most significant risk factors for particular types of cancer. Discovery risk factor has been identified to shows highest confidence values. We concluded that apriori indicates to be the best association rule-mining algorithm for significant risk factor discovery.","PeriodicalId":335795,"journal":{"name":"2008 11th International Conference on Computer and Information Technology","volume":"101 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Significant cancer risk factor extraction: An association rule discovery approach\",\"authors\":\"J. Nahar, K. Tickle\",\"doi\":\"10.1109/ICCITECHN.2008.4803102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cancer is the top most death threat for human life all over the world. Current research in the cancer area is still struggling to provide better support to a cancer patient. In this research our aim is to identify the significant risk factors for particular types of cancer. First, we constructed a risk factor data set through an extensive literature review of bladder, breast, cervical, lung, prostate and skin cancer. We further employed three association rule mining algorithms, apriori, predictive apriori and Tertius algorithm in order to discover most significant risk factors for particular types of cancer. Discovery risk factor has been identified to shows highest confidence values. We concluded that apriori indicates to be the best association rule-mining algorithm for significant risk factor discovery.\",\"PeriodicalId\":335795,\"journal\":{\"name\":\"2008 11th International Conference on Computer and Information Technology\",\"volume\":\"101 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 11th International Conference on Computer and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2008.4803102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 11th International Conference on Computer and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2008.4803102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

癌症是全世界人类生命的头号死亡威胁。目前,癌症领域的研究仍在努力为癌症患者提供更好的支持。在这项研究中,我们的目标是确定特定类型癌症的重要风险因素。首先,我们通过对膀胱癌、乳腺癌、宫颈癌、肺癌、前列腺癌和皮肤癌的广泛文献回顾,构建了一个风险因素数据集。我们进一步使用了三种关联规则挖掘算法,apriori,预测性apriori和Tertius算法,以发现特定类型癌症的最重要危险因素。发现风险因素已被确定为显示最高置信度值。我们得出结论,apriori指示是发现重大风险因素的最佳关联规则挖掘算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Significant cancer risk factor extraction: An association rule discovery approach
Cancer is the top most death threat for human life all over the world. Current research in the cancer area is still struggling to provide better support to a cancer patient. In this research our aim is to identify the significant risk factors for particular types of cancer. First, we constructed a risk factor data set through an extensive literature review of bladder, breast, cervical, lung, prostate and skin cancer. We further employed three association rule mining algorithms, apriori, predictive apriori and Tertius algorithm in order to discover most significant risk factors for particular types of cancer. Discovery risk factor has been identified to shows highest confidence values. We concluded that apriori indicates to be the best association rule-mining algorithm for significant risk factor discovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信