{"title":"射频腔谐振控制的极值求法","authors":"A. Scheinker","doi":"10.1109/ACC.2016.7526624","DOIUrl":null,"url":null,"abstract":"We present an Extremum Seeking approach for resonance control of radio frequency (RF) resonant cavities without phase measurements. The controller minimizes reflected power from an RF cavity by utilizing model-independent ES. Unlike phase measurement-based resonance controllers, this approach does not require cable length-based calibration. Furthermore, this adaptive approach automatically tracks temperature-induced cable length changes which could otherwise require re-calibration or uncompensated would introduce time-varying offsets. We give a theoretical overview of the problem, a general overview of the controller, and present experimental results.","PeriodicalId":137983,"journal":{"name":"2016 American Control Conference (ACC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extremum Seeking for RF cavity resonance control\",\"authors\":\"A. Scheinker\",\"doi\":\"10.1109/ACC.2016.7526624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an Extremum Seeking approach for resonance control of radio frequency (RF) resonant cavities without phase measurements. The controller minimizes reflected power from an RF cavity by utilizing model-independent ES. Unlike phase measurement-based resonance controllers, this approach does not require cable length-based calibration. Furthermore, this adaptive approach automatically tracks temperature-induced cable length changes which could otherwise require re-calibration or uncompensated would introduce time-varying offsets. We give a theoretical overview of the problem, a general overview of the controller, and present experimental results.\",\"PeriodicalId\":137983,\"journal\":{\"name\":\"2016 American Control Conference (ACC)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2016.7526624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2016.7526624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present an Extremum Seeking approach for resonance control of radio frequency (RF) resonant cavities without phase measurements. The controller minimizes reflected power from an RF cavity by utilizing model-independent ES. Unlike phase measurement-based resonance controllers, this approach does not require cable length-based calibration. Furthermore, this adaptive approach automatically tracks temperature-induced cable length changes which could otherwise require re-calibration or uncompensated would introduce time-varying offsets. We give a theoretical overview of the problem, a general overview of the controller, and present experimental results.