SIFT和SURF在眼周区域识别中的应用

Samil Karahan, Adil Karaoz, O. F. Ozdemir, Ahmet Gokhan Gu, U. Uludag
{"title":"SIFT和SURF在眼周区域识别中的应用","authors":"Samil Karahan, Adil Karaoz, O. F. Ozdemir, Ahmet Gokhan Gu, U. Uludag","doi":"10.5281/ZENODO.44187","DOIUrl":null,"url":null,"abstract":"We concentrate on utilization of facial periocular region for biometric identification. Although this region has superior discriminative characteristics, as compared to mouth and nose, it has not been frequently used as an independent modality for personal identification. We employ a feature-based representation, where the associated periocular image is divided into left and right sides, and descriptor vectors are extracted from these using popular feature extraction algorithms SIFT, SURF, BRISK, ORB, and LBP. We also concatenate descriptor vectors. Utilizing FLANN and Brute Force matchers, we report recognition rates and ROC. For the periocular region image data, obtained from widely used FERET database consisting of 865 subjects, we obtain Rank-1 recognition rate of 96.8% for full frontal and different facial expressions in same session cases. We include a summary of existing methods, and show that the proposed method produces lower/comparable error rates with respect to the current state of the art.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"On identification from periocular region utilizing SIFT and SURF\",\"authors\":\"Samil Karahan, Adil Karaoz, O. F. Ozdemir, Ahmet Gokhan Gu, U. Uludag\",\"doi\":\"10.5281/ZENODO.44187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We concentrate on utilization of facial periocular region for biometric identification. Although this region has superior discriminative characteristics, as compared to mouth and nose, it has not been frequently used as an independent modality for personal identification. We employ a feature-based representation, where the associated periocular image is divided into left and right sides, and descriptor vectors are extracted from these using popular feature extraction algorithms SIFT, SURF, BRISK, ORB, and LBP. We also concatenate descriptor vectors. Utilizing FLANN and Brute Force matchers, we report recognition rates and ROC. For the periocular region image data, obtained from widely used FERET database consisting of 865 subjects, we obtain Rank-1 recognition rate of 96.8% for full frontal and different facial expressions in same session cases. We include a summary of existing methods, and show that the proposed method produces lower/comparable error rates with respect to the current state of the art.\",\"PeriodicalId\":198408,\"journal\":{\"name\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.44187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.44187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

我们专注于利用面部眼周区域进行生物识别。尽管与口鼻相比,这一区域具有优越的鉴别特征,但它并没有经常被用作个人识别的独立模式。我们采用基于特征的表示,将相关的眼周图像分为左右两侧,并使用流行的特征提取算法SIFT, SURF, BRISK, ORB和LBP从这些图像中提取描述子向量。我们也连接描述符向量。利用FLANN和蛮力匹配器,我们报告识别率和ROC。对于使用广泛的FERET数据库中865名受试者的眼周区域图像数据,我们获得了相同会话病例中全额和不同面部表情的Rank-1识别率为96.8%。我们包括现有方法的摘要,并表明所提出的方法相对于当前技术状态产生更低/可比的错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On identification from periocular region utilizing SIFT and SURF
We concentrate on utilization of facial periocular region for biometric identification. Although this region has superior discriminative characteristics, as compared to mouth and nose, it has not been frequently used as an independent modality for personal identification. We employ a feature-based representation, where the associated periocular image is divided into left and right sides, and descriptor vectors are extracted from these using popular feature extraction algorithms SIFT, SURF, BRISK, ORB, and LBP. We also concatenate descriptor vectors. Utilizing FLANN and Brute Force matchers, we report recognition rates and ROC. For the periocular region image data, obtained from widely used FERET database consisting of 865 subjects, we obtain Rank-1 recognition rate of 96.8% for full frontal and different facial expressions in same session cases. We include a summary of existing methods, and show that the proposed method produces lower/comparable error rates with respect to the current state of the art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信