基于新模式序列滤波的故障检测

John Cuzzola, D. Gašević, E. Bagheri
{"title":"基于新模式序列滤波的故障检测","authors":"John Cuzzola, D. Gašević, E. Bagheri","doi":"10.1109/ICMLA.2011.69","DOIUrl":null,"url":null,"abstract":"Multi-threaded applications are commonplace in today's software landscape. Pushing the boundaries of concurrency and parallelism, programmers are maximizing performance demanded by stakeholders. However, multi-threaded programs are challenging to test and debug. Prone to their own set of unique faults, such as race conditions, testers need to turn to automated validation tools for assistance. This paper's main contribution is a new algorithm called multi-stage novelty filtering (MSNF) that can aid in the discovery of software faults. MSNF stresses minimal configuration, no domain specific data preprocessing or software metrics. The MSNF approach is based on a multi-layered support vector machine scheme. After experimentation with the MSNF algorithm, we observed promising results in terms of precision. However, MSNF relies on multiple iterations (i.e., stages). Here, we propose four different strategies for estimating the number of the requested stages.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fault Detection through Sequential Filtering of Novelty Patterns\",\"authors\":\"John Cuzzola, D. Gašević, E. Bagheri\",\"doi\":\"10.1109/ICMLA.2011.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-threaded applications are commonplace in today's software landscape. Pushing the boundaries of concurrency and parallelism, programmers are maximizing performance demanded by stakeholders. However, multi-threaded programs are challenging to test and debug. Prone to their own set of unique faults, such as race conditions, testers need to turn to automated validation tools for assistance. This paper's main contribution is a new algorithm called multi-stage novelty filtering (MSNF) that can aid in the discovery of software faults. MSNF stresses minimal configuration, no domain specific data preprocessing or software metrics. The MSNF approach is based on a multi-layered support vector machine scheme. After experimentation with the MSNF algorithm, we observed promising results in terms of precision. However, MSNF relies on multiple iterations (i.e., stages). Here, we propose four different strategies for estimating the number of the requested stages.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多线程应用程序在当今的软件环境中很常见。程序员不断突破并发性和并行性的界限,最大化了涉众所要求的性能。然而,多线程程序在测试和调试方面具有挑战性。测试人员容易出现他们自己的一组独特的错误,比如竞态条件,他们需要求助于自动验证工具。本文的主要贡献是一种称为多阶段新颖性滤波(MSNF)的新算法,它可以帮助发现软件故障。MSNF强调最小的配置,没有特定领域的数据预处理或软件指标。MSNF方法基于多层支持向量机方案。通过对MSNF算法的实验,我们观察到在精度方面有希望的结果。然而,MSNF依赖于多个迭代(即阶段)。在这里,我们提出了四种不同的策略来估计所请求阶段的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault Detection through Sequential Filtering of Novelty Patterns
Multi-threaded applications are commonplace in today's software landscape. Pushing the boundaries of concurrency and parallelism, programmers are maximizing performance demanded by stakeholders. However, multi-threaded programs are challenging to test and debug. Prone to their own set of unique faults, such as race conditions, testers need to turn to automated validation tools for assistance. This paper's main contribution is a new algorithm called multi-stage novelty filtering (MSNF) that can aid in the discovery of software faults. MSNF stresses minimal configuration, no domain specific data preprocessing or software metrics. The MSNF approach is based on a multi-layered support vector machine scheme. After experimentation with the MSNF algorithm, we observed promising results in terms of precision. However, MSNF relies on multiple iterations (i.e., stages). Here, we propose four different strategies for estimating the number of the requested stages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信