描述:作为图片评估的文件。使用上下文向量和自组织地图可视化信息

David A. Rushall, M. Ilgen
{"title":"描述:作为图片评估的文件。使用上下文向量和自组织地图可视化信息","authors":"David A. Rushall, M. Ilgen","doi":"10.1109/INFVIS.1996.559228","DOIUrl":null,"url":null,"abstract":"HNC Software, Inc. has developed a system called DEPICT for visualizing the information content of large textual corpora. The system is built around two separate neural network methodologies: context vectors and self-organizing maps. Context vectors (CVs) are high dimensional information representations that encode the semantic content of the textual entities they represent. Self-organizing maps (SOMs) are capable of transforming an input, high dimensional signal space into a much lower (usually two or three) dimensional output space useful for visualization. Neither process requires human intervention, nor an external knowledge base. Together, these neural network techniques can be utilized to automatically identify the relevant information themes present in a corpus, and present those themes to the user in a intuitive visual form.","PeriodicalId":153504,"journal":{"name":"Proceedings IEEE Symposium on Information Visualization '96","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"DEPICT: Documents Evaluated as Pictures. Visualizing information using context vectors and self-organizing maps\",\"authors\":\"David A. Rushall, M. Ilgen\",\"doi\":\"10.1109/INFVIS.1996.559228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"HNC Software, Inc. has developed a system called DEPICT for visualizing the information content of large textual corpora. The system is built around two separate neural network methodologies: context vectors and self-organizing maps. Context vectors (CVs) are high dimensional information representations that encode the semantic content of the textual entities they represent. Self-organizing maps (SOMs) are capable of transforming an input, high dimensional signal space into a much lower (usually two or three) dimensional output space useful for visualization. Neither process requires human intervention, nor an external knowledge base. Together, these neural network techniques can be utilized to automatically identify the relevant information themes present in a corpus, and present those themes to the user in a intuitive visual form.\",\"PeriodicalId\":153504,\"journal\":{\"name\":\"Proceedings IEEE Symposium on Information Visualization '96\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Symposium on Information Visualization '96\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFVIS.1996.559228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Symposium on Information Visualization '96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFVIS.1996.559228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

HNC软件公司开发了一个名为“描述”的系统,用于可视化大型文本语料库的信息内容。该系统是围绕两种独立的神经网络方法构建的:上下文向量和自组织地图。上下文向量(CVs)是一种高维的信息表示,它对所表示的文本实体的语义内容进行编码。自组织映射(SOMs)能够将输入的高维信号空间转换为对可视化有用的低得多的(通常是二维或三维)输出空间。流程既不需要人工干预,也不需要外部知识库。总之,这些神经网络技术可以用来自动识别语料库中存在的相关信息主题,并以直观的视觉形式将这些主题呈现给用户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DEPICT: Documents Evaluated as Pictures. Visualizing information using context vectors and self-organizing maps
HNC Software, Inc. has developed a system called DEPICT for visualizing the information content of large textual corpora. The system is built around two separate neural network methodologies: context vectors and self-organizing maps. Context vectors (CVs) are high dimensional information representations that encode the semantic content of the textual entities they represent. Self-organizing maps (SOMs) are capable of transforming an input, high dimensional signal space into a much lower (usually two or three) dimensional output space useful for visualization. Neither process requires human intervention, nor an external knowledge base. Together, these neural network techniques can be utilized to automatically identify the relevant information themes present in a corpus, and present those themes to the user in a intuitive visual form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信