4-[123I]碘spiperone作为多巴胺DA受体的配体:大鼠模型的体外和体内实验

J.A. Van Der Krogt , E.K.J. Pauwels , P.A.P.M. Van Doremalen , G. Wijnhoven , S. Reiffers , C.F.M. Van Valkenburg , O.J.S. Buruma
{"title":"4-[123I]碘spiperone作为多巴胺DA受体的配体:大鼠模型的体外和体内实验","authors":"J.A. Van Der Krogt ,&nbsp;E.K.J. Pauwels ,&nbsp;P.A.P.M. Van Doremalen ,&nbsp;G. Wijnhoven ,&nbsp;S. Reiffers ,&nbsp;C.F.M. Van Valkenburg ,&nbsp;O.J.S. Buruma","doi":"10.1016/0883-2897(92)90137-N","DOIUrl":null,"url":null,"abstract":"<div><p>Radioiodinated spiperone is of interest for dopamine (DA) receptor studies in the living human brain by single photon emission computed tomography (SPECT). Stimulated by data obtained with [<sup>11</sup>C]-<em>N</em>-methyl-spiperone we synthesized 4-[<sup>123</sup>I]iodospiperone and investigated the <em>in vitro</em> binding characteristics of this ligand to the striatal membrane of the rat and the <em>in vivo</em> distribution over various rat brain regions. The <em>in vitro</em> binding experiments showed that this radioligand displays about 10 times less affinity for the DA receptor than spiperone and specific binding, as shown with [<sup>3</sup>H]spiperone, was not observed. Displacement by butaclamol was not observed. The <em>in vivo</em> studies demonstrated that both 4-[<sup>123</sup>I]iodospiperone and [<sup>3</sup>H]spiperone concentrate in striatal tissue, respectively, 1.9 and 3.5 times as high as in cerebellar tissue.</p><p>Haloperidol pretreatment largely prevented this accumulation. In view of the obtained target-to-non-target ratios we believe, however, that this accumulation in brain areas rich in DA-receptors does not offer prospects for clinical receptor imaging with SPECT.</p></div>","PeriodicalId":14328,"journal":{"name":"International Journal of Radiation Applications and Instrumentation. Part B. Nuclear Medicine and Biology","volume":"19 7","pages":"Pages 759-763"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0883-2897(92)90137-N","citationCount":"0","resultStr":"{\"title\":\"4-[123I]Iodospiperone as a ligand for dopamine DA receptors: In vitro and in vivo experiments in a rat model\",\"authors\":\"J.A. Van Der Krogt ,&nbsp;E.K.J. Pauwels ,&nbsp;P.A.P.M. Van Doremalen ,&nbsp;G. Wijnhoven ,&nbsp;S. Reiffers ,&nbsp;C.F.M. Van Valkenburg ,&nbsp;O.J.S. Buruma\",\"doi\":\"10.1016/0883-2897(92)90137-N\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Radioiodinated spiperone is of interest for dopamine (DA) receptor studies in the living human brain by single photon emission computed tomography (SPECT). Stimulated by data obtained with [<sup>11</sup>C]-<em>N</em>-methyl-spiperone we synthesized 4-[<sup>123</sup>I]iodospiperone and investigated the <em>in vitro</em> binding characteristics of this ligand to the striatal membrane of the rat and the <em>in vivo</em> distribution over various rat brain regions. The <em>in vitro</em> binding experiments showed that this radioligand displays about 10 times less affinity for the DA receptor than spiperone and specific binding, as shown with [<sup>3</sup>H]spiperone, was not observed. Displacement by butaclamol was not observed. The <em>in vivo</em> studies demonstrated that both 4-[<sup>123</sup>I]iodospiperone and [<sup>3</sup>H]spiperone concentrate in striatal tissue, respectively, 1.9 and 3.5 times as high as in cerebellar tissue.</p><p>Haloperidol pretreatment largely prevented this accumulation. In view of the obtained target-to-non-target ratios we believe, however, that this accumulation in brain areas rich in DA-receptors does not offer prospects for clinical receptor imaging with SPECT.</p></div>\",\"PeriodicalId\":14328,\"journal\":{\"name\":\"International Journal of Radiation Applications and Instrumentation. Part B. Nuclear Medicine and Biology\",\"volume\":\"19 7\",\"pages\":\"Pages 759-763\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0883-2897(92)90137-N\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Radiation Applications and Instrumentation. Part B. Nuclear Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/088328979290137N\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Radiation Applications and Instrumentation. Part B. Nuclear Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/088328979290137N","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

放射性碘化的spiperone是通过单光子发射计算机断层扫描(SPECT)研究活体人脑多巴胺(DA)受体的兴趣。在[11C]- n -甲基-spiperone获得的数据的刺激下,我们合成了4-[123I]碘spiperone,并研究了该配体与大鼠纹状体膜的体外结合特性以及在大鼠脑各区域的体内分布。体外结合实验表明,该放射性配体对DA受体的亲和力约为spiperone的10倍,并且未观察到与[3H]spiperone的特异性结合。未观察到布他卡摩引起的移位。体内研究表明,4-[123I]碘spiperone和[3H]spiperone在纹状体组织中的浓度分别是小脑组织的1.9倍和3.5倍。氟哌啶醇预处理在很大程度上阻止了这种积累。然而,鉴于获得的靶与非靶比率,我们认为,这种在富含da受体的大脑区域的积累并不能为SPECT临床受体成像提供前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
4-[123I]Iodospiperone as a ligand for dopamine DA receptors: In vitro and in vivo experiments in a rat model

Radioiodinated spiperone is of interest for dopamine (DA) receptor studies in the living human brain by single photon emission computed tomography (SPECT). Stimulated by data obtained with [11C]-N-methyl-spiperone we synthesized 4-[123I]iodospiperone and investigated the in vitro binding characteristics of this ligand to the striatal membrane of the rat and the in vivo distribution over various rat brain regions. The in vitro binding experiments showed that this radioligand displays about 10 times less affinity for the DA receptor than spiperone and specific binding, as shown with [3H]spiperone, was not observed. Displacement by butaclamol was not observed. The in vivo studies demonstrated that both 4-[123I]iodospiperone and [3H]spiperone concentrate in striatal tissue, respectively, 1.9 and 3.5 times as high as in cerebellar tissue.

Haloperidol pretreatment largely prevented this accumulation. In view of the obtained target-to-non-target ratios we believe, however, that this accumulation in brain areas rich in DA-receptors does not offer prospects for clinical receptor imaging with SPECT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信