用ACO和HHO两种元启发式算法求解分配问题

El Attaoui Anas, Norelislam El Hami
{"title":"用ACO和HHO两种元启发式算法求解分配问题","authors":"El Attaoui Anas, Norelislam El Hami","doi":"10.1109/ICOA55659.2022.9934141","DOIUrl":null,"url":null,"abstract":"This study presents two population-based, nature-inspired optimization paradigms, named “Harris Hawks Optimization” HHO and “Ant Colony Optimization” ACO. The inspiration of HHO is the collaborative performance and chasing style of Harris' hawks in nature. Otherwise, ACO is inspired by studying the behaviour of real ants. Those two natural motions were scientifically represented to build optimization algorithms. The performance of HHO and ACO optimizers is checked throughout a comparison based on various test functions and an application of a problem called: Minimizing the cost of assigning personnel to a plant.","PeriodicalId":345017,"journal":{"name":"2022 8th International Conference on Optimization and Applications (ICOA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assignment problem solved by two metaheuristic algorithms ACO and HHO\",\"authors\":\"El Attaoui Anas, Norelislam El Hami\",\"doi\":\"10.1109/ICOA55659.2022.9934141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents two population-based, nature-inspired optimization paradigms, named “Harris Hawks Optimization” HHO and “Ant Colony Optimization” ACO. The inspiration of HHO is the collaborative performance and chasing style of Harris' hawks in nature. Otherwise, ACO is inspired by studying the behaviour of real ants. Those two natural motions were scientifically represented to build optimization algorithms. The performance of HHO and ACO optimizers is checked throughout a comparison based on various test functions and an application of a problem called: Minimizing the cost of assigning personnel to a plant.\",\"PeriodicalId\":345017,\"journal\":{\"name\":\"2022 8th International Conference on Optimization and Applications (ICOA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 8th International Conference on Optimization and Applications (ICOA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOA55659.2022.9934141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA55659.2022.9934141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了两种基于群体的、受自然启发的优化范式,分别命名为“Harris Hawks optimization”HHO和“Ant Colony optimization”ACO。HHO的灵感来源于自然界中哈里斯鹰的协同表演和追逐风格。除此之外,蚁群算法的灵感来自于对真实蚂蚁行为的研究。对这两种自然运动进行科学表征,构建优化算法。HHO和ACO优化器的性能通过基于各种测试功能的比较来检查,并应用一个问题:将人员分配到工厂的成本降至最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assignment problem solved by two metaheuristic algorithms ACO and HHO
This study presents two population-based, nature-inspired optimization paradigms, named “Harris Hawks Optimization” HHO and “Ant Colony Optimization” ACO. The inspiration of HHO is the collaborative performance and chasing style of Harris' hawks in nature. Otherwise, ACO is inspired by studying the behaviour of real ants. Those two natural motions were scientifically represented to build optimization algorithms. The performance of HHO and ACO optimizers is checked throughout a comparison based on various test functions and an application of a problem called: Minimizing the cost of assigning personnel to a plant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信