具有时变时滞的中性型随机神经网络的鲁棒稳定性

Yangzheng Zeng, Lilan Tu, Guojun Liu
{"title":"具有时变时滞的中性型随机神经网络的鲁棒稳定性","authors":"Yangzheng Zeng, Lilan Tu, Guojun Liu","doi":"10.1109/ICNC.2012.6234565","DOIUrl":null,"url":null,"abstract":"This paper focuses on the global delay-dependent robust asymptotic stability of stochastic neural networks of neutral type with time-varying delays. The delay functions of networks under consideration are bounded but not necessarily differentiable. Based on the stochastic Lyapunov stability theory, itÔ's differential rule and linear matrix inequality (LMI) optimization technique, a delay-dependent asymptotic stability criterion is derived. Finally, an illustrative example is given to show the effectiveness and feasibility of the proposed method.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust stability of stochastic neural networks of neutral type with time-varying delays\",\"authors\":\"Yangzheng Zeng, Lilan Tu, Guojun Liu\",\"doi\":\"10.1109/ICNC.2012.6234565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the global delay-dependent robust asymptotic stability of stochastic neural networks of neutral type with time-varying delays. The delay functions of networks under consideration are bounded but not necessarily differentiable. Based on the stochastic Lyapunov stability theory, itÔ's differential rule and linear matrix inequality (LMI) optimization technique, a delay-dependent asymptotic stability criterion is derived. Finally, an illustrative example is given to show the effectiveness and feasibility of the proposed method.\",\"PeriodicalId\":404981,\"journal\":{\"name\":\"2012 8th International Conference on Natural Computation\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.6234565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有时变时滞的中立型随机神经网络的全局时滞相关鲁棒渐近稳定性问题。所考虑的网络的延迟函数是有界的,但不一定是可微的。基于随机Lyapunov稳定性理论、itÔ微分规则和线性矩阵不等式(LMI)优化技术,导出了时滞相关的渐近稳定性判据。最后,通过一个算例验证了所提方法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust stability of stochastic neural networks of neutral type with time-varying delays
This paper focuses on the global delay-dependent robust asymptotic stability of stochastic neural networks of neutral type with time-varying delays. The delay functions of networks under consideration are bounded but not necessarily differentiable. Based on the stochastic Lyapunov stability theory, itÔ's differential rule and linear matrix inequality (LMI) optimization technique, a delay-dependent asymptotic stability criterion is derived. Finally, an illustrative example is given to show the effectiveness and feasibility of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信