用小波变换确定心音特征

M. N. Kurnaz, T. Ölmez
{"title":"用小波变换确定心音特征","authors":"M. N. Kurnaz, T. Ölmez","doi":"10.1109/CBMS.2002.1011370","DOIUrl":null,"url":null,"abstract":"A method is presented to determine features of heart sounds. A wavelet transform is applied to a window of two periods of heart sounds. Two analyses are realized for the signals in the window: segmentation of the first and second heart sounds, and extraction of the features. After the segmentation, feature vectors are formed by using the wavelet detail coefficients at the sixth decomposition level. The best feature elements are analyzed by using dynamic programming.","PeriodicalId":369629,"journal":{"name":"Proceedings of 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Determination of features for heart sounds by using wavelet transforms\",\"authors\":\"M. N. Kurnaz, T. Ölmez\",\"doi\":\"10.1109/CBMS.2002.1011370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method is presented to determine features of heart sounds. A wavelet transform is applied to a window of two periods of heart sounds. Two analyses are realized for the signals in the window: segmentation of the first and second heart sounds, and extraction of the features. After the segmentation, feature vectors are formed by using the wavelet detail coefficients at the sixth decomposition level. The best feature elements are analyzed by using dynamic programming.\",\"PeriodicalId\":369629,\"journal\":{\"name\":\"Proceedings of 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2002.1011370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2002.1011370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种确定心音特征的方法。将小波变换应用于两个心音周期的窗口。对窗口内的信号进行两种分析:第一心音和第二心音的分割和特征的提取。分割后,在第六分解层利用小波细节系数形成特征向量。采用动态规划方法分析了最佳特征元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of features for heart sounds by using wavelet transforms
A method is presented to determine features of heart sounds. A wavelet transform is applied to a window of two periods of heart sounds. Two analyses are realized for the signals in the window: segmentation of the first and second heart sounds, and extraction of the features. After the segmentation, feature vectors are formed by using the wavelet detail coefficients at the sixth decomposition level. The best feature elements are analyzed by using dynamic programming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信