机器学习系统墨守成规

P. Barham, M. Isard
{"title":"机器学习系统墨守成规","authors":"P. Barham, M. Isard","doi":"10.1145/3317550.3321441","DOIUrl":null,"url":null,"abstract":"In this paper we argue that systems for numerical computing are stuck in a local basin of performance and programmability. Systems researchers are doing an excellent job improving the performance of 5-year-old benchmarks, but gradually making it harder to explore innovative machine learning research ideas. We explain how the evolution of hardware accelerators favors compiler back ends that hyper-optimize large monolithic kernels, show how this reliance on high-performance but inflexible kernels reinforces the dominant style of programming model, and argue these programming abstractions lack expressiveness, maintainability, and modularity; all of which hinders research progress. We conclude by noting promising directions in the field, and advocate steps to advance progress towards high-performance general purpose numerical computing systems on modern accelerators.","PeriodicalId":224944,"journal":{"name":"Proceedings of the Workshop on Hot Topics in Operating Systems","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Machine Learning Systems are Stuck in a Rut\",\"authors\":\"P. Barham, M. Isard\",\"doi\":\"10.1145/3317550.3321441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we argue that systems for numerical computing are stuck in a local basin of performance and programmability. Systems researchers are doing an excellent job improving the performance of 5-year-old benchmarks, but gradually making it harder to explore innovative machine learning research ideas. We explain how the evolution of hardware accelerators favors compiler back ends that hyper-optimize large monolithic kernels, show how this reliance on high-performance but inflexible kernels reinforces the dominant style of programming model, and argue these programming abstractions lack expressiveness, maintainability, and modularity; all of which hinders research progress. We conclude by noting promising directions in the field, and advocate steps to advance progress towards high-performance general purpose numerical computing systems on modern accelerators.\",\"PeriodicalId\":224944,\"journal\":{\"name\":\"Proceedings of the Workshop on Hot Topics in Operating Systems\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Workshop on Hot Topics in Operating Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3317550.3321441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Hot Topics in Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3317550.3321441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

在本文中,我们认为用于数值计算的系统停留在性能和可编程性的局部盆地中。系统研究人员在提高5年前的基准性能方面做得很好,但逐渐使探索创新的机器学习研究思路变得更加困难。我们解释了硬件加速器的发展如何有利于编译器后端对大型单片内核进行超优化,展示了这种对高性能但不灵活的内核的依赖如何强化了编程模型的主导风格,并论证了这些编程抽象缺乏表达性、可维护性和模块化;所有这些都阻碍了研究的进展。最后,我们指出了该领域有希望的方向,并主张采取步骤,在现代加速器上推进高性能通用数值计算系统的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Systems are Stuck in a Rut
In this paper we argue that systems for numerical computing are stuck in a local basin of performance and programmability. Systems researchers are doing an excellent job improving the performance of 5-year-old benchmarks, but gradually making it harder to explore innovative machine learning research ideas. We explain how the evolution of hardware accelerators favors compiler back ends that hyper-optimize large monolithic kernels, show how this reliance on high-performance but inflexible kernels reinforces the dominant style of programming model, and argue these programming abstractions lack expressiveness, maintainability, and modularity; all of which hinders research progress. We conclude by noting promising directions in the field, and advocate steps to advance progress towards high-performance general purpose numerical computing systems on modern accelerators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信