基于CNN特征的多尺度相关滤波视觉跟踪

Yibo Min, Jianwei Ma, Shaofei Zang, Yang Liu
{"title":"基于CNN特征的多尺度相关滤波视觉跟踪","authors":"Yibo Min, Jianwei Ma, Shaofei Zang, Yang Liu","doi":"10.1145/3375998.3376009","DOIUrl":null,"url":null,"abstract":"In order to meet the requirements of tracking accuracy and speed of visual tracking algorithm, a multi-scale correlation filtering visual tracking algorithm combined with CNN features is proposed. For the challenge of the training for convolutional neural network consumes numerous data and time we exploit an online convolutional neural network training method that extracts the features of the target context through a shallow network layer. Then, the correlation filtering algorithm is applied to the visual tracking of the given target features and the multi-scale search of the optimal response. Finally, the experiment results show that only using two simple network layers to extract the target features as a multi-channel feature of kernel correlation filtering can achieve excellent results.","PeriodicalId":395773,"journal":{"name":"Proceedings of the 2019 8th International Conference on Networks, Communication and Computing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-scale Correlation Filtering Visual Tracking via CNN Features\",\"authors\":\"Yibo Min, Jianwei Ma, Shaofei Zang, Yang Liu\",\"doi\":\"10.1145/3375998.3376009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to meet the requirements of tracking accuracy and speed of visual tracking algorithm, a multi-scale correlation filtering visual tracking algorithm combined with CNN features is proposed. For the challenge of the training for convolutional neural network consumes numerous data and time we exploit an online convolutional neural network training method that extracts the features of the target context through a shallow network layer. Then, the correlation filtering algorithm is applied to the visual tracking of the given target features and the multi-scale search of the optimal response. Finally, the experiment results show that only using two simple network layers to extract the target features as a multi-channel feature of kernel correlation filtering can achieve excellent results.\",\"PeriodicalId\":395773,\"journal\":{\"name\":\"Proceedings of the 2019 8th International Conference on Networks, Communication and Computing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 8th International Conference on Networks, Communication and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375998.3376009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 8th International Conference on Networks, Communication and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375998.3376009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了满足视觉跟踪算法对跟踪精度和速度的要求,提出了一种结合CNN特征的多尺度相关滤波视觉跟踪算法。针对卷积神经网络训练耗费大量数据和时间的挑战,提出了一种通过浅层网络提取目标上下文特征的在线卷积神经网络训练方法。然后,将相关滤波算法应用于给定目标特征的视觉跟踪和最优响应的多尺度搜索。最后,实验结果表明,仅使用两个简单的网络层提取目标特征作为核相关滤波的多通道特征,即可取得优异的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-scale Correlation Filtering Visual Tracking via CNN Features
In order to meet the requirements of tracking accuracy and speed of visual tracking algorithm, a multi-scale correlation filtering visual tracking algorithm combined with CNN features is proposed. For the challenge of the training for convolutional neural network consumes numerous data and time we exploit an online convolutional neural network training method that extracts the features of the target context through a shallow network layer. Then, the correlation filtering algorithm is applied to the visual tracking of the given target features and the multi-scale search of the optimal response. Finally, the experiment results show that only using two simple network layers to extract the target features as a multi-channel feature of kernel correlation filtering can achieve excellent results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信