噪声存在下的攻击弹性状态估计

M. Pajic, P. Tabuada, Insup Lee, George J. Pappas
{"title":"噪声存在下的攻击弹性状态估计","authors":"M. Pajic, P. Tabuada, Insup Lee, George J. Pappas","doi":"10.1109/CDC.2015.7403135","DOIUrl":null,"url":null,"abstract":"We consider the problem of attack-resilient state estimation in the presence of noise. We focus on the most general model for sensor attacks where any signal can be injected via the compromised sensors. An l0-based state estimator that can be formulated as a mixed-integer linear program and its convex relaxation based on the l1 norm are presented. For both l0 and l1-based state estimators, we derive rigorous analytic bounds on the state-estimation errors. We show that the worst-case error is linear with the size of the noise, meaning that the attacker cannot exploit noise and modeling errors to introduce unbounded state-estimation errors. Finally, we show how the presented attack-resilient state estimators can be used for sound attack detection and identification, and provide conditions on the size of attack vectors that will ensure correct identification of compromised sensors.","PeriodicalId":308101,"journal":{"name":"2015 54th IEEE Conference on Decision and Control (CDC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Attack-resilient state estimation in the presence of noise\",\"authors\":\"M. Pajic, P. Tabuada, Insup Lee, George J. Pappas\",\"doi\":\"10.1109/CDC.2015.7403135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of attack-resilient state estimation in the presence of noise. We focus on the most general model for sensor attacks where any signal can be injected via the compromised sensors. An l0-based state estimator that can be formulated as a mixed-integer linear program and its convex relaxation based on the l1 norm are presented. For both l0 and l1-based state estimators, we derive rigorous analytic bounds on the state-estimation errors. We show that the worst-case error is linear with the size of the noise, meaning that the attacker cannot exploit noise and modeling errors to introduce unbounded state-estimation errors. Finally, we show how the presented attack-resilient state estimators can be used for sound attack detection and identification, and provide conditions on the size of attack vectors that will ensure correct identification of compromised sensors.\",\"PeriodicalId\":308101,\"journal\":{\"name\":\"2015 54th IEEE Conference on Decision and Control (CDC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 54th IEEE Conference on Decision and Control (CDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2015.7403135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 54th IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2015.7403135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

研究了噪声存在下的攻击弹性状态估计问题。我们专注于传感器攻击的最通用模型,其中任何信号都可以通过受损的传感器注入。给出了一种基于l1范数的混合整数线性规划的状态估计器及其基于l1范数的凸松弛。对于基于10和基于11的状态估计器,我们导出了状态估计误差的严格解析界。我们证明了最坏情况误差与噪声的大小成线性关系,这意味着攻击者不能利用噪声和建模误差来引入无界状态估计误差。最后,我们展示了所提出的攻击弹性状态估计器如何用于声音攻击检测和识别,并提供了攻击向量大小的条件,以确保正确识别受损传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attack-resilient state estimation in the presence of noise
We consider the problem of attack-resilient state estimation in the presence of noise. We focus on the most general model for sensor attacks where any signal can be injected via the compromised sensors. An l0-based state estimator that can be formulated as a mixed-integer linear program and its convex relaxation based on the l1 norm are presented. For both l0 and l1-based state estimators, we derive rigorous analytic bounds on the state-estimation errors. We show that the worst-case error is linear with the size of the noise, meaning that the attacker cannot exploit noise and modeling errors to introduce unbounded state-estimation errors. Finally, we show how the presented attack-resilient state estimators can be used for sound attack detection and identification, and provide conditions on the size of attack vectors that will ensure correct identification of compromised sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信