基于文件关系图的恶意软件智能检测

Lingwei Chen, Tao Li, Melih Abdulhayoglu, Yanfang Ye
{"title":"基于文件关系图的恶意软件智能检测","authors":"Lingwei Chen, Tao Li, Melih Abdulhayoglu, Yanfang Ye","doi":"10.1109/ICOSC.2015.7050784","DOIUrl":null,"url":null,"abstract":"Due to its damage to Internet security, malware and its detection has caught the attention of both anti-malware industry and researchers for decades. Many research efforts have been conducted on developing intelligent malware detection systems. In these systems, resting on the analysis of file contents extracted from the file samples, like Application Programming Interface (API) calls, instruction sequences, and binary strings, data mining methods such as Naive Bayes and Support Vector Machines have been used for malware detection. However, driven by the economic benefits, both diversity and sophistication of malware have significantly increased in recent years. Therefore, anti-malware industry calls for much more novel methods which are capable to protect the users against new threats, and more difficult to evade. In this paper, other than based on file contents extracted from the file samples, we study how file relation graphs can be used for malware detection and propose a novel Belief Propagation algorithm based on the constructed graphs to detect newly unknown malware. A comprehensive experimental study on a real and large data collection from Comodo Cloud Security Center is performed to compare various malware detection approaches. Promising experimental results demonstrate that the accuracy and efficiency of our proposed method outperform other alternate data mining based detection techniques.","PeriodicalId":126701,"journal":{"name":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Intelligent malware detection based on file relation graphs\",\"authors\":\"Lingwei Chen, Tao Li, Melih Abdulhayoglu, Yanfang Ye\",\"doi\":\"10.1109/ICOSC.2015.7050784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to its damage to Internet security, malware and its detection has caught the attention of both anti-malware industry and researchers for decades. Many research efforts have been conducted on developing intelligent malware detection systems. In these systems, resting on the analysis of file contents extracted from the file samples, like Application Programming Interface (API) calls, instruction sequences, and binary strings, data mining methods such as Naive Bayes and Support Vector Machines have been used for malware detection. However, driven by the economic benefits, both diversity and sophistication of malware have significantly increased in recent years. Therefore, anti-malware industry calls for much more novel methods which are capable to protect the users against new threats, and more difficult to evade. In this paper, other than based on file contents extracted from the file samples, we study how file relation graphs can be used for malware detection and propose a novel Belief Propagation algorithm based on the constructed graphs to detect newly unknown malware. A comprehensive experimental study on a real and large data collection from Comodo Cloud Security Center is performed to compare various malware detection approaches. Promising experimental results demonstrate that the accuracy and efficiency of our proposed method outperform other alternate data mining based detection techniques.\",\"PeriodicalId\":126701,\"journal\":{\"name\":\"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSC.2015.7050784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2015.7050784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

由于其对网络安全的危害,恶意软件及其检测已经引起了反恶意软件行业和研究人员的广泛关注。在开发智能恶意软件检测系统方面已经进行了许多研究工作。在这些系统中,基于对从文件样本中提取的文件内容的分析,如应用程序编程接口(API)调用、指令序列和二进制字符串,数据挖掘方法(如朴素贝叶斯和支持向量机)已被用于恶意软件检测。然而,在经济利益的驱动下,近年来恶意软件的多样性和复杂性都显著增加。因此,反恶意软件行业需要更多新颖的方法来保护用户免受新的威胁,并且更难以逃避。本文除了基于从文件样本中提取的文件内容外,还研究了如何将文件关系图用于恶意软件检测,并提出了一种基于构建的图的信念传播算法来检测新的未知恶意软件。通过对科摩多云安全中心收集的大量真实数据进行综合实验研究,比较了各种恶意软件检测方法。有希望的实验结果表明,我们提出的方法的准确性和效率优于其他基于数据挖掘的替代检测技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent malware detection based on file relation graphs
Due to its damage to Internet security, malware and its detection has caught the attention of both anti-malware industry and researchers for decades. Many research efforts have been conducted on developing intelligent malware detection systems. In these systems, resting on the analysis of file contents extracted from the file samples, like Application Programming Interface (API) calls, instruction sequences, and binary strings, data mining methods such as Naive Bayes and Support Vector Machines have been used for malware detection. However, driven by the economic benefits, both diversity and sophistication of malware have significantly increased in recent years. Therefore, anti-malware industry calls for much more novel methods which are capable to protect the users against new threats, and more difficult to evade. In this paper, other than based on file contents extracted from the file samples, we study how file relation graphs can be used for malware detection and propose a novel Belief Propagation algorithm based on the constructed graphs to detect newly unknown malware. A comprehensive experimental study on a real and large data collection from Comodo Cloud Security Center is performed to compare various malware detection approaches. Promising experimental results demonstrate that the accuracy and efficiency of our proposed method outperform other alternate data mining based detection techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信