Yu Wang, R. Tan, G. Xing, Jianxun Wang, Xiaobo Tan, Xiaoming Liu, Xiangmao Chang
{"title":"使用基于智能手机的机器人传感器监测水生垃圾","authors":"Yu Wang, R. Tan, G. Xing, Jianxun Wang, Xiaobo Tan, Xiaoming Liu, Xiangmao Chang","doi":"10.1109/IPSN.2014.6846737","DOIUrl":null,"url":null,"abstract":"Monitoring aquatic debris is of great interest to the ecosystems, marine life, human health, and water transport. This paper presents the design and implementation of SOAR - a vision-based surveillance robot system that integrates an off-the-shelf Android smartphone and a gliding robotic fish for debris monitoring. SOAR features real-time debris detection and coverage-based rotation scheduling algorithms. The image processing algorithms for debris detection are specifically designed to address the unique challenges in aquatic environments. The rotation scheduling algorithm provides effective coverage of sporadic debris arrivals despite camera's limited angular view. Moreover, SOAR is able to dynamically offload computation-intensive processing tasks to the cloud for battery power conservation. We have implemented a SOAR prototype and conducted extensive experimental evaluation. The results show that SOAR can accurately detect debris in the presence of various environment and system dynamics, and the rotation scheduling algorithm enables SOAR to capture debris arrivals with reduced energy consumption.","PeriodicalId":297218,"journal":{"name":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Aquatic debris monitoring using smartphone-based robotic sensors\",\"authors\":\"Yu Wang, R. Tan, G. Xing, Jianxun Wang, Xiaobo Tan, Xiaoming Liu, Xiangmao Chang\",\"doi\":\"10.1109/IPSN.2014.6846737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring aquatic debris is of great interest to the ecosystems, marine life, human health, and water transport. This paper presents the design and implementation of SOAR - a vision-based surveillance robot system that integrates an off-the-shelf Android smartphone and a gliding robotic fish for debris monitoring. SOAR features real-time debris detection and coverage-based rotation scheduling algorithms. The image processing algorithms for debris detection are specifically designed to address the unique challenges in aquatic environments. The rotation scheduling algorithm provides effective coverage of sporadic debris arrivals despite camera's limited angular view. Moreover, SOAR is able to dynamically offload computation-intensive processing tasks to the cloud for battery power conservation. We have implemented a SOAR prototype and conducted extensive experimental evaluation. The results show that SOAR can accurately detect debris in the presence of various environment and system dynamics, and the rotation scheduling algorithm enables SOAR to capture debris arrivals with reduced energy consumption.\",\"PeriodicalId\":297218,\"journal\":{\"name\":\"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPSN.2014.6846737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPSN.2014.6846737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aquatic debris monitoring using smartphone-based robotic sensors
Monitoring aquatic debris is of great interest to the ecosystems, marine life, human health, and water transport. This paper presents the design and implementation of SOAR - a vision-based surveillance robot system that integrates an off-the-shelf Android smartphone and a gliding robotic fish for debris monitoring. SOAR features real-time debris detection and coverage-based rotation scheduling algorithms. The image processing algorithms for debris detection are specifically designed to address the unique challenges in aquatic environments. The rotation scheduling algorithm provides effective coverage of sporadic debris arrivals despite camera's limited angular view. Moreover, SOAR is able to dynamically offload computation-intensive processing tasks to the cloud for battery power conservation. We have implemented a SOAR prototype and conducted extensive experimental evaluation. The results show that SOAR can accurately detect debris in the presence of various environment and system dynamics, and the rotation scheduling algorithm enables SOAR to capture debris arrivals with reduced energy consumption.