一种自洽k·p薛定谔和泊松方程的自适应网格算法

P. Chang, Xiaoyan Liu, L. Zeng, K. Wei, G. Du
{"title":"一种自洽k·p薛定谔和泊松方程的自适应网格算法","authors":"P. Chang, Xiaoyan Liu, L. Zeng, K. Wei, G. Du","doi":"10.1109/IWCE.2014.6865845","DOIUrl":null,"url":null,"abstract":"Hole mobility in ultra-thin body (UTB) InSb-OI devices is calculated by a microscopic approach. An adaptive grid algorithm is employed to discretize 2-D k space. The accurate valence band structures are obtained via solving the 6-band k·p Schrödinger and Poisson equations self-consistently. Hole mobility is computed using the Kubo-Greenwood formalism accounting for nonpolar acoustic and optical phonons, polar optical phonons, and surface roughness scattering mechanisms.","PeriodicalId":168149,"journal":{"name":"2014 International Workshop on Computational Electronics (IWCE)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An adaptive grid algorithm for self-consistent k·p Schrodinger and Poisson equations in UTB InSb-based pMOSFETs\",\"authors\":\"P. Chang, Xiaoyan Liu, L. Zeng, K. Wei, G. Du\",\"doi\":\"10.1109/IWCE.2014.6865845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hole mobility in ultra-thin body (UTB) InSb-OI devices is calculated by a microscopic approach. An adaptive grid algorithm is employed to discretize 2-D k space. The accurate valence band structures are obtained via solving the 6-band k·p Schrödinger and Poisson equations self-consistently. Hole mobility is computed using the Kubo-Greenwood formalism accounting for nonpolar acoustic and optical phonons, polar optical phonons, and surface roughness scattering mechanisms.\",\"PeriodicalId\":168149,\"journal\":{\"name\":\"2014 International Workshop on Computational Electronics (IWCE)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Workshop on Computational Electronics (IWCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2014.6865845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Computational Electronics (IWCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2014.6865845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

采用微观方法计算了超薄体(UTB) InSb-OI器件的空穴迁移率。采用自适应网格算法对二维k空间进行离散化。通过自一致性地求解6波段k·p Schrödinger和泊松方程,得到了准确的价带结构。利用Kubo-Greenwood形式计算空穴迁移率,考虑非极性声子和光学声子、极性光学声子和表面粗糙度散射机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive grid algorithm for self-consistent k·p Schrodinger and Poisson equations in UTB InSb-based pMOSFETs
Hole mobility in ultra-thin body (UTB) InSb-OI devices is calculated by a microscopic approach. An adaptive grid algorithm is employed to discretize 2-D k space. The accurate valence band structures are obtained via solving the 6-band k·p Schrödinger and Poisson equations self-consistently. Hole mobility is computed using the Kubo-Greenwood formalism accounting for nonpolar acoustic and optical phonons, polar optical phonons, and surface roughness scattering mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信