基于ST-Net的自增强手势交互系统

Zhengzhe Liu, Xiaojuan Qi, Lei Pang
{"title":"基于ST-Net的自增强手势交互系统","authors":"Zhengzhe Liu, Xiaojuan Qi, Lei Pang","doi":"10.1145/3240508.3240530","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a self-boosted intelligent system for joint sign language recognition and automatic education. A novel Spatial-Temporal Net (ST-Net) is designed to exploit the temporal dynamics of localized hands for sign language recognition. Features from ST-Net can be deployed by our education system to detect failure modes of the learners. Moreover, the education system can help collect a vast amount of data for training ST-Net. Our sign language recognition and education system help improve each other step-by-step.On the one hand, benefited from accurate recognition system, the education system can detect the failure parts of the learner more precisely. On the other hand, with more training data gathered from the education system, the recognition system becomes more robust and accurate. Experiments on Hong Kong sign language dataset containing 227 commonly used words validate the effectiveness of our joint recognition and education system.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Self-boosted Gesture Interactive System with ST-Net\",\"authors\":\"Zhengzhe Liu, Xiaojuan Qi, Lei Pang\",\"doi\":\"10.1145/3240508.3240530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a self-boosted intelligent system for joint sign language recognition and automatic education. A novel Spatial-Temporal Net (ST-Net) is designed to exploit the temporal dynamics of localized hands for sign language recognition. Features from ST-Net can be deployed by our education system to detect failure modes of the learners. Moreover, the education system can help collect a vast amount of data for training ST-Net. Our sign language recognition and education system help improve each other step-by-step.On the one hand, benefited from accurate recognition system, the education system can detect the failure parts of the learner more precisely. On the other hand, with more training data gathered from the education system, the recognition system becomes more robust and accurate. Experiments on Hong Kong sign language dataset containing 227 commonly used words validate the effectiveness of our joint recognition and education system.\",\"PeriodicalId\":339857,\"journal\":{\"name\":\"Proceedings of the 26th ACM international conference on Multimedia\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3240508.3240530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种用于手语联合识别和自动教育的自增强智能系统。设计了一种新的时空网络(ST-Net)来利用局部手部的时间动态进行手语识别。我们的教育系统可以利用ST-Net的特征来检测学习者的失败模式。此外,教育系统可以帮助收集大量数据用于培训ST-Net。我们的手语识别和教育系统相互促进。一方面,得益于准确的识别系统,教育系统可以更准确地发现学习者的失败部分。另一方面,随着从教育系统中收集到更多的训练数据,识别系统变得更加健壮和准确。在包含227个常用词汇的香港手语数据集上进行的实验验证了我们联合识别和教育系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-boosted Gesture Interactive System with ST-Net
In this paper, we propose a self-boosted intelligent system for joint sign language recognition and automatic education. A novel Spatial-Temporal Net (ST-Net) is designed to exploit the temporal dynamics of localized hands for sign language recognition. Features from ST-Net can be deployed by our education system to detect failure modes of the learners. Moreover, the education system can help collect a vast amount of data for training ST-Net. Our sign language recognition and education system help improve each other step-by-step.On the one hand, benefited from accurate recognition system, the education system can detect the failure parts of the learner more precisely. On the other hand, with more training data gathered from the education system, the recognition system becomes more robust and accurate. Experiments on Hong Kong sign language dataset containing 227 commonly used words validate the effectiveness of our joint recognition and education system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信