通过放大遥远平面上的误差来校准工业机器人

Chandra Sekhar Gatla, R. Lumia, John E. Wood, G. Starr
{"title":"通过放大遥远平面上的误差来校准工业机器人","authors":"Chandra Sekhar Gatla, R. Lumia, John E. Wood, G. Starr","doi":"10.1109/IROS.2007.4398969","DOIUrl":null,"url":null,"abstract":"This paper describes a robot calibration approach called the virtual closed kinematic chain (ViCKi) method. Traditionally, calibration requires the measurement of the position and orientation of the end effector, and measurement resolution limits the accuracy of the robot model. In ViCKi, we attach a laser to the end effector to create a virtual 7th link. The laser spot produced on a distant plane, the end of this virtual link, magnifies small changes at the end effector, resulting in a high resolution error measurement of the end effector. The accuracy of the robot after using the proposed calibration procedure is measured by aiming at an arbitrary fixed point and measuring the mean and standard deviation of the radius of spread of the projected points. The mean and standard deviation of the radius of spread were improved from 5.64 mm and 1.89 mm to 1.05 mm and 0.587 mm respectively. It is also shown in simulation that the method can be automated by a feedback system that can be implemented in real-time.","PeriodicalId":227148,"journal":{"name":"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Calibration of industrial robots by magnifying errors on a distant plane\",\"authors\":\"Chandra Sekhar Gatla, R. Lumia, John E. Wood, G. Starr\",\"doi\":\"10.1109/IROS.2007.4398969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a robot calibration approach called the virtual closed kinematic chain (ViCKi) method. Traditionally, calibration requires the measurement of the position and orientation of the end effector, and measurement resolution limits the accuracy of the robot model. In ViCKi, we attach a laser to the end effector to create a virtual 7th link. The laser spot produced on a distant plane, the end of this virtual link, magnifies small changes at the end effector, resulting in a high resolution error measurement of the end effector. The accuracy of the robot after using the proposed calibration procedure is measured by aiming at an arbitrary fixed point and measuring the mean and standard deviation of the radius of spread of the projected points. The mean and standard deviation of the radius of spread were improved from 5.64 mm and 1.89 mm to 1.05 mm and 0.587 mm respectively. It is also shown in simulation that the method can be automated by a feedback system that can be implemented in real-time.\",\"PeriodicalId\":227148,\"journal\":{\"name\":\"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2007.4398969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2007.4398969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文介绍了一种机器人标定方法——虚拟闭合运动链(ViCKi)法。传统上,校准需要测量末端执行器的位置和方向,而测量分辨率限制了机器人模型的精度。在ViCKi中,我们将激光连接到末端执行器以创建虚拟的第七个链接。激光光斑产生在遥远的平面上,这个虚拟链路的末端,放大了末端执行器的微小变化,导致了末端执行器的高分辨率误差测量。采用所提出的校准程序后,机器人的精度是通过瞄准任意固定点,测量投影点扩散半径的平均值和标准差来测量的。扩散半径的平均值和标准差分别由5.64 mm和1.89 mm提高到1.05 mm和0.587 mm。仿真结果表明,该方法可以通过一个实时实现的反馈系统实现自动化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibration of industrial robots by magnifying errors on a distant plane
This paper describes a robot calibration approach called the virtual closed kinematic chain (ViCKi) method. Traditionally, calibration requires the measurement of the position and orientation of the end effector, and measurement resolution limits the accuracy of the robot model. In ViCKi, we attach a laser to the end effector to create a virtual 7th link. The laser spot produced on a distant plane, the end of this virtual link, magnifies small changes at the end effector, resulting in a high resolution error measurement of the end effector. The accuracy of the robot after using the proposed calibration procedure is measured by aiming at an arbitrary fixed point and measuring the mean and standard deviation of the radius of spread of the projected points. The mean and standard deviation of the radius of spread were improved from 5.64 mm and 1.89 mm to 1.05 mm and 0.587 mm respectively. It is also shown in simulation that the method can be automated by a feedback system that can be implemented in real-time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信