人格、情感和心理状态识别与分析的人际行为建模

Chi-Chun Lee
{"title":"人格、情感和心理状态识别与分析的人际行为建模","authors":"Chi-Chun Lee","doi":"10.1145/3266302.3266303","DOIUrl":null,"url":null,"abstract":"Imagine humans as complex dynamical systems: systems that are characterized by multiple interacting layers of hidden states (e.g., internal processes involving functions of cognition, perception, production, emotion, and social interaction) producing measurable multimodal signals (e.g., body gestures, facial expressions, physiology, and speech). This abstraction of humans with a signals and systems framework naturally brings a synergy between communities of engineering and behavioral sciences. Various research fields have emerged from such an interdisciplinary human-centered effort, e.g., behavioral signal processing [7], social signal processing [10], and affective computing [8], where technological advancements has continuously been made in order to robustly assess and infer individual speaker's states and traits. The complexities in modeling human behavior are centered on the issue of heterogeneity of human behavior. Sources of variability in human behaviors originate from the differences in mechanisms of information encoding (behavior production) and decoding (behavior perception). Furthermore, a key additional layer of complexity exists because human behaviors occur largely during interactions with the environment and agents therein. This interplay, which causes a coupling effect between humans' behaviors, is the essence of interpersonal dynamics. This unique behavior dynamic has been at core not only in human communication studies [2], but further is crucial in automatic characterizing the speaker's social-affective behavior phenomenon (e.g., emotion recognition [4, 5] and personality trait identification [3, 9]) and in understanding interactions of those typical, distressed to disordered manifestations [1, 6].","PeriodicalId":123523,"journal":{"name":"Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpersonal Behavior Modeling for Personality, Affect, and Mental States Recognition and Analysis\",\"authors\":\"Chi-Chun Lee\",\"doi\":\"10.1145/3266302.3266303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Imagine humans as complex dynamical systems: systems that are characterized by multiple interacting layers of hidden states (e.g., internal processes involving functions of cognition, perception, production, emotion, and social interaction) producing measurable multimodal signals (e.g., body gestures, facial expressions, physiology, and speech). This abstraction of humans with a signals and systems framework naturally brings a synergy between communities of engineering and behavioral sciences. Various research fields have emerged from such an interdisciplinary human-centered effort, e.g., behavioral signal processing [7], social signal processing [10], and affective computing [8], where technological advancements has continuously been made in order to robustly assess and infer individual speaker's states and traits. The complexities in modeling human behavior are centered on the issue of heterogeneity of human behavior. Sources of variability in human behaviors originate from the differences in mechanisms of information encoding (behavior production) and decoding (behavior perception). Furthermore, a key additional layer of complexity exists because human behaviors occur largely during interactions with the environment and agents therein. This interplay, which causes a coupling effect between humans' behaviors, is the essence of interpersonal dynamics. This unique behavior dynamic has been at core not only in human communication studies [2], but further is crucial in automatic characterizing the speaker's social-affective behavior phenomenon (e.g., emotion recognition [4, 5] and personality trait identification [3, 9]) and in understanding interactions of those typical, distressed to disordered manifestations [1, 6].\",\"PeriodicalId\":123523,\"journal\":{\"name\":\"Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3266302.3266303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3266302.3266303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

把人类想象成一个复杂的动态系统:以隐藏状态的多个相互作用层为特征的系统(例如,涉及认知、感知、生产、情感和社会互动功能的内部过程)产生可测量的多模态信号(例如,身体手势、面部表情、生理和语言)。这种抽象的人类与信号和系统框架自然带来了工程和行为科学社区之间的协同作用。在这种以人为中心的跨学科努力下,出现了各种各样的研究领域,如行为信号处理[7]、社会信号处理[10]和情感计算[8],这些领域的技术不断进步,以稳健地评估和推断个体说话者的状态和特征。人类行为建模的复杂性集中在人类行为的异质性问题上。人类行为的可变性来源于信息编码(行为产生)和解码(行为感知)机制的差异。此外,由于人类行为主要发生在与环境和其中的代理的相互作用中,因此存在一个关键的附加复杂性层。这种相互作用,导致人类行为之间的耦合效应,是人际动力学的本质。这种独特的行为动态不仅是人类交际研究的核心[2],而且对于自动表征说话者的社会情感行为现象(例如,情绪识别[4,5]和人格特质识别[3,9])以及理解那些典型的、痛苦的到混乱的表现之间的相互作用至关重要[1,6]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpersonal Behavior Modeling for Personality, Affect, and Mental States Recognition and Analysis
Imagine humans as complex dynamical systems: systems that are characterized by multiple interacting layers of hidden states (e.g., internal processes involving functions of cognition, perception, production, emotion, and social interaction) producing measurable multimodal signals (e.g., body gestures, facial expressions, physiology, and speech). This abstraction of humans with a signals and systems framework naturally brings a synergy between communities of engineering and behavioral sciences. Various research fields have emerged from such an interdisciplinary human-centered effort, e.g., behavioral signal processing [7], social signal processing [10], and affective computing [8], where technological advancements has continuously been made in order to robustly assess and infer individual speaker's states and traits. The complexities in modeling human behavior are centered on the issue of heterogeneity of human behavior. Sources of variability in human behaviors originate from the differences in mechanisms of information encoding (behavior production) and decoding (behavior perception). Furthermore, a key additional layer of complexity exists because human behaviors occur largely during interactions with the environment and agents therein. This interplay, which causes a coupling effect between humans' behaviors, is the essence of interpersonal dynamics. This unique behavior dynamic has been at core not only in human communication studies [2], but further is crucial in automatic characterizing the speaker's social-affective behavior phenomenon (e.g., emotion recognition [4, 5] and personality trait identification [3, 9]) and in understanding interactions of those typical, distressed to disordered manifestations [1, 6].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信