图像分割的无监督特征选择与学习

M. S. Allili, D. Ziou, N. Bouguila, S. Boutemedjet
{"title":"图像分割的无监督特征选择与学习","authors":"M. S. Allili, D. Ziou, N. Bouguila, S. Boutemedjet","doi":"10.1109/CRV.2010.44","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the integration of feature selection in segmentation through an unsupervised learning approach. We propose a clustering algorithm that efficiently mitigates image under/over-segmentation, by combining generalized Gaussian mixture modeling and feature selection. The algorithm is based on generalized Gaussian mixture modeling which is less prone to region number over-estimation in case of noisy and heavy-tailed image distributions. On the other hand, our feature selection mechanism allows to automatically discard uninformative features, which leads to better discrimination and localization of regions in high-dimensional spaces. Experimental results on a large database of real-world images showed us the effectiveness of the proposed approach.","PeriodicalId":358821,"journal":{"name":"2010 Canadian Conference on Computer and Robot Vision","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Unsupervised Feature Selection and Learning for Image Segmentation\",\"authors\":\"M. S. Allili, D. Ziou, N. Bouguila, S. Boutemedjet\",\"doi\":\"10.1109/CRV.2010.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate the integration of feature selection in segmentation through an unsupervised learning approach. We propose a clustering algorithm that efficiently mitigates image under/over-segmentation, by combining generalized Gaussian mixture modeling and feature selection. The algorithm is based on generalized Gaussian mixture modeling which is less prone to region number over-estimation in case of noisy and heavy-tailed image distributions. On the other hand, our feature selection mechanism allows to automatically discard uninformative features, which leads to better discrimination and localization of regions in high-dimensional spaces. Experimental results on a large database of real-world images showed us the effectiveness of the proposed approach.\",\"PeriodicalId\":358821,\"journal\":{\"name\":\"2010 Canadian Conference on Computer and Robot Vision\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Canadian Conference on Computer and Robot Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2010.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Canadian Conference on Computer and Robot Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2010.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们通过一种无监督学习方法研究了特征选择在分割中的集成。本文提出了一种将广义高斯混合建模和特征选择相结合的聚类算法,有效地缓解了图像的过分割和欠分割。该算法基于广义高斯混合建模,在噪声和重尾图像分布情况下不易出现区域数过估计。另一方面,我们的特征选择机制允许自动丢弃无信息的特征,从而更好地识别和定位高维空间中的区域。在大型真实图像数据库上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Feature Selection and Learning for Image Segmentation
In this paper we investigate the integration of feature selection in segmentation through an unsupervised learning approach. We propose a clustering algorithm that efficiently mitigates image under/over-segmentation, by combining generalized Gaussian mixture modeling and feature selection. The algorithm is based on generalized Gaussian mixture modeling which is less prone to region number over-estimation in case of noisy and heavy-tailed image distributions. On the other hand, our feature selection mechanism allows to automatically discard uninformative features, which leads to better discrimination and localization of regions in high-dimensional spaces. Experimental results on a large database of real-world images showed us the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信