采用隐式李雅普诺夫函数方法设计齐次微分器

A. Polyakov, D. Efimov, W. Perruquetti
{"title":"采用隐式李雅普诺夫函数方法设计齐次微分器","authors":"A. Polyakov, D. Efimov, W. Perruquetti","doi":"10.1109/ECC.2014.6862399","DOIUrl":null,"url":null,"abstract":"The Implicit Lyapunov Function (ILF) for a class of homogeneous systems is introduced and studied. The analysis of homogeneous differentiator using ILF method is presented. Sufficient stability conditions for homogeneous differentiator are obtained and represented by a parameterized system of Linear Matrix Inequalities (LMI). The differentiation error and convergence time are estimated. The procedure of parameters tuning for homogeneous differentiator is formulated as the semi-definite programming problem with LMI constraints. The obtained theoretical results are supported by numerical simulations.","PeriodicalId":251538,"journal":{"name":"2014 European Control Conference (ECC)","volume":"46 8 Pt 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Homogeneous differentiator design using implicit Lyapunov Function method\",\"authors\":\"A. Polyakov, D. Efimov, W. Perruquetti\",\"doi\":\"10.1109/ECC.2014.6862399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Implicit Lyapunov Function (ILF) for a class of homogeneous systems is introduced and studied. The analysis of homogeneous differentiator using ILF method is presented. Sufficient stability conditions for homogeneous differentiator are obtained and represented by a parameterized system of Linear Matrix Inequalities (LMI). The differentiation error and convergence time are estimated. The procedure of parameters tuning for homogeneous differentiator is formulated as the semi-definite programming problem with LMI constraints. The obtained theoretical results are supported by numerical simulations.\",\"PeriodicalId\":251538,\"journal\":{\"name\":\"2014 European Control Conference (ECC)\",\"volume\":\"46 8 Pt 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECC.2014.6862399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECC.2014.6862399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

介绍并研究了一类齐次系统的隐式Lyapunov函数(ILF)。提出了用ILF法分析齐次微分器的方法。得到了齐次微分器的充分稳定性条件,并用线性矩阵不等式(LMI)的参数化系统来表示。对微分误差和收敛时间进行了估计。将齐次微分器的参数整定过程表述为具有LMI约束的半确定规划问题。所得的理论结果得到了数值模拟的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homogeneous differentiator design using implicit Lyapunov Function method
The Implicit Lyapunov Function (ILF) for a class of homogeneous systems is introduced and studied. The analysis of homogeneous differentiator using ILF method is presented. Sufficient stability conditions for homogeneous differentiator are obtained and represented by a parameterized system of Linear Matrix Inequalities (LMI). The differentiation error and convergence time are estimated. The procedure of parameters tuning for homogeneous differentiator is formulated as the semi-definite programming problem with LMI constraints. The obtained theoretical results are supported by numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信