大规模实施预测性学习分析:教师的视角

C. Herodotou, B. Rienties, Avinash Boroowa, Z. Zdráhal, Martin Hlosta, G. Naydenova
{"title":"大规模实施预测性学习分析:教师的视角","authors":"C. Herodotou, B. Rienties, Avinash Boroowa, Z. Zdráhal, Martin Hlosta, G. Naydenova","doi":"10.1145/3027385.3027397","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a large-scale study about the use of predictive learning analytics data with 240 teachers in 10 modules at a distance learning higher education institution. The aim of the study was to illuminate teachers' uses and practices of predictive data, in particular identify how predictive data was used to support students at risk of not completing or failing a module. Data were collected from statistical analysis of 17,033 students' performance by the end of the intervention, teacher usage statistics, and five individual semi-structured interviews with teachers. Findings revealed that teachers endorse the use of predictive data to support their practice yet in diverse ways and raised the need for devising appropriate intervention strategies to support students at risk.","PeriodicalId":160897,"journal":{"name":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Implementing predictive learning analytics on a large scale: the teacher's perspective\",\"authors\":\"C. Herodotou, B. Rienties, Avinash Boroowa, Z. Zdráhal, Martin Hlosta, G. Naydenova\",\"doi\":\"10.1145/3027385.3027397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe a large-scale study about the use of predictive learning analytics data with 240 teachers in 10 modules at a distance learning higher education institution. The aim of the study was to illuminate teachers' uses and practices of predictive data, in particular identify how predictive data was used to support students at risk of not completing or failing a module. Data were collected from statistical analysis of 17,033 students' performance by the end of the intervention, teacher usage statistics, and five individual semi-structured interviews with teachers. Findings revealed that teachers endorse the use of predictive data to support their practice yet in diverse ways and raised the need for devising appropriate intervention strategies to support students at risk.\",\"PeriodicalId\":160897,\"journal\":{\"name\":\"Proceedings of the Seventh International Learning Analytics & Knowledge Conference\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh International Learning Analytics & Knowledge Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3027385.3027397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3027385.3027397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

在本文中,我们描述了一项关于使用预测学习分析数据的大规模研究,该研究涉及一家远程教育高等教育机构的10个模块的240名教师。该研究的目的是阐明教师对预测数据的使用和实践,特别是确定如何使用预测数据来支持有可能无法完成或不及格的学生。数据收集自17,033名学生在干预结束时的表现统计分析,教师使用统计数据以及五次对教师的半结构化访谈。调查结果显示,教师支持使用预测数据以不同的方式支持他们的实践,并提出需要制定适当的干预策略来支持有风险的学生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementing predictive learning analytics on a large scale: the teacher's perspective
In this paper, we describe a large-scale study about the use of predictive learning analytics data with 240 teachers in 10 modules at a distance learning higher education institution. The aim of the study was to illuminate teachers' uses and practices of predictive data, in particular identify how predictive data was used to support students at risk of not completing or failing a module. Data were collected from statistical analysis of 17,033 students' performance by the end of the intervention, teacher usage statistics, and five individual semi-structured interviews with teachers. Findings revealed that teachers endorse the use of predictive data to support their practice yet in diverse ways and raised the need for devising appropriate intervention strategies to support students at risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信