隐私保护预测分析与智能电表

Biruk K. Habtemariam, A. Miranskyy, A. Miri, Saeed Samet, M. Davison
{"title":"隐私保护预测分析与智能电表","authors":"Biruk K. Habtemariam, A. Miranskyy, A. Miri, Saeed Samet, M. Davison","doi":"10.1109/BigDataCongress.2016.31","DOIUrl":null,"url":null,"abstract":"Smart meter data analysis provides key insights about energy demand and usage patterns for efficient operation of power generation and distribution companies. The increase in modern communication bandwidth enables smart meters to transmit the data to a corresponding utility company at hourly update rates or faster. Analysing such large amount of data often requires a high performance cloud computing environment. However, using such environment may lead to exposure of energy consumption patterns of individual households, with the potential consequence of damaging privacy breaches. To mitigate the risk of a privacy breach, this paper proposes a secure linear regression model for smart meter data analytics, based on a Partially Homomorphic Encryption algorithm. In the proposed method, the primary variable; here, the power reading, is encrypted. The statistical coefficients are then computed directly from the cyphertext using integer mappings. With this approach, a computationally feasible linear regression is achievable without compromising a detailed household energy usage profile. Simulation experiments are conducted that demonstrate the performance of proposed method with respect to accuracy and computational complexity.","PeriodicalId":407471,"journal":{"name":"2016 IEEE International Congress on Big Data (BigData Congress)","volume":"32 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Privacy Preserving Predictive Analytics with Smart Meters\",\"authors\":\"Biruk K. Habtemariam, A. Miranskyy, A. Miri, Saeed Samet, M. Davison\",\"doi\":\"10.1109/BigDataCongress.2016.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart meter data analysis provides key insights about energy demand and usage patterns for efficient operation of power generation and distribution companies. The increase in modern communication bandwidth enables smart meters to transmit the data to a corresponding utility company at hourly update rates or faster. Analysing such large amount of data often requires a high performance cloud computing environment. However, using such environment may lead to exposure of energy consumption patterns of individual households, with the potential consequence of damaging privacy breaches. To mitigate the risk of a privacy breach, this paper proposes a secure linear regression model for smart meter data analytics, based on a Partially Homomorphic Encryption algorithm. In the proposed method, the primary variable; here, the power reading, is encrypted. The statistical coefficients are then computed directly from the cyphertext using integer mappings. With this approach, a computationally feasible linear regression is achievable without compromising a detailed household energy usage profile. Simulation experiments are conducted that demonstrate the performance of proposed method with respect to accuracy and computational complexity.\",\"PeriodicalId\":407471,\"journal\":{\"name\":\"2016 IEEE International Congress on Big Data (BigData Congress)\",\"volume\":\"32 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Congress on Big Data (BigData Congress)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BigDataCongress.2016.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Congress on Big Data (BigData Congress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2016.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

智能电表数据分析为发电和配电公司的高效运营提供了关于能源需求和使用模式的关键见解。现代通信带宽的增加使智能电表能够以每小时或更快的速度将数据传输到相应的公用事业公司。分析如此大量的数据通常需要一个高性能的云计算环境。然而,使用这样的环境可能会暴露单个家庭的能源消费模式,并可能造成破坏性隐私泄露的后果。为了降低隐私泄露的风险,本文提出了一种基于部分同态加密算法的智能电表数据分析的安全线性回归模型。在提出的方法中,主变量;这里,功率读数是加密的。然后使用整数映射直接从密文计算统计系数。通过这种方法,在不影响详细的家庭能源使用概况的情况下,可以实现计算上可行的线性回归。仿真实验证明了该方法在精度和计算复杂度方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Privacy Preserving Predictive Analytics with Smart Meters
Smart meter data analysis provides key insights about energy demand and usage patterns for efficient operation of power generation and distribution companies. The increase in modern communication bandwidth enables smart meters to transmit the data to a corresponding utility company at hourly update rates or faster. Analysing such large amount of data often requires a high performance cloud computing environment. However, using such environment may lead to exposure of energy consumption patterns of individual households, with the potential consequence of damaging privacy breaches. To mitigate the risk of a privacy breach, this paper proposes a secure linear regression model for smart meter data analytics, based on a Partially Homomorphic Encryption algorithm. In the proposed method, the primary variable; here, the power reading, is encrypted. The statistical coefficients are then computed directly from the cyphertext using integer mappings. With this approach, a computationally feasible linear regression is achievable without compromising a detailed household energy usage profile. Simulation experiments are conducted that demonstrate the performance of proposed method with respect to accuracy and computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信