一种用于目标检测的特征金字塔网络新结构

Yichen Zhang, Jeong Hoon Han, Y. Kwon, Y. Moon
{"title":"一种用于目标检测的特征金字塔网络新结构","authors":"Yichen Zhang, Jeong Hoon Han, Y. Kwon, Y. Moon","doi":"10.1109/ICCC51575.2020.9345302","DOIUrl":null,"url":null,"abstract":"In recent years, object detectors generally use the feature pyramid network (FPN) to solve the problem of scale variation in object detection. In this paper, we propose a new architecture of feature pyramid network which combines a top-down feature pyramid network and a bottom-up feature pyramid network. The main contributions of the proposed method are two-fold: (1) We design a more complex feature pyramid network to get the feature maps for object detection. (2) By combining these two architectures, we can get the feature maps with richer semantic information to solve the problem of scale variation better. The proposed method experiments on PASCAL VOC2007 dataset. Experimental results show that the proposed method can improve the accuracy of detectors using the FPN by about 1.67%.","PeriodicalId":386048,"journal":{"name":"2020 IEEE 6th International Conference on Computer and Communications (ICCC)","volume":"9 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A New Architecture of Feature Pyramid Network for Object Detection\",\"authors\":\"Yichen Zhang, Jeong Hoon Han, Y. Kwon, Y. Moon\",\"doi\":\"10.1109/ICCC51575.2020.9345302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, object detectors generally use the feature pyramid network (FPN) to solve the problem of scale variation in object detection. In this paper, we propose a new architecture of feature pyramid network which combines a top-down feature pyramid network and a bottom-up feature pyramid network. The main contributions of the proposed method are two-fold: (1) We design a more complex feature pyramid network to get the feature maps for object detection. (2) By combining these two architectures, we can get the feature maps with richer semantic information to solve the problem of scale variation better. The proposed method experiments on PASCAL VOC2007 dataset. Experimental results show that the proposed method can improve the accuracy of detectors using the FPN by about 1.67%.\",\"PeriodicalId\":386048,\"journal\":{\"name\":\"2020 IEEE 6th International Conference on Computer and Communications (ICCC)\",\"volume\":\"9 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 6th International Conference on Computer and Communications (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCC51575.2020.9345302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 6th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC51575.2020.9345302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

近年来,目标检测器普遍采用特征金字塔网络(FPN)来解决目标检测中的尺度变化问题。本文提出了一种结合自顶向下特征金字塔网络和自底向上特征金字塔网络的特征金字塔网络结构。该方法的主要贡献有两个方面:(1)我们设计了一个更复杂的特征金字塔网络来获得用于目标检测的特征映射。(2)结合这两种架构,可以得到语义信息更丰富的特征图,更好地解决尺度变化问题。该方法在PASCAL VOC2007数据集上进行了实验。实验结果表明,该方法可将基于FPN的检测器精度提高约1.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Architecture of Feature Pyramid Network for Object Detection
In recent years, object detectors generally use the feature pyramid network (FPN) to solve the problem of scale variation in object detection. In this paper, we propose a new architecture of feature pyramid network which combines a top-down feature pyramid network and a bottom-up feature pyramid network. The main contributions of the proposed method are two-fold: (1) We design a more complex feature pyramid network to get the feature maps for object detection. (2) By combining these two architectures, we can get the feature maps with richer semantic information to solve the problem of scale variation better. The proposed method experiments on PASCAL VOC2007 dataset. Experimental results show that the proposed method can improve the accuracy of detectors using the FPN by about 1.67%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信