幂律介质中具有时变色散、非线性和衰减的1 + 2维光孤子

A. Biswas, E. Zerrad
{"title":"幂律介质中具有时变色散、非线性和衰减的1 + 2维光孤子","authors":"A. Biswas, E. Zerrad","doi":"10.1142/S1793528808000021","DOIUrl":null,"url":null,"abstract":"This paper studies optical solitons in 1 + 2 dimensions with power law nonlinearity in the presence of time-dependent coefficients of dispersion, nonlinearity and attenuation. The one-soliton solution to the governing nonlinear Schrodinger equation is obtained and the constraint relation between these coefficients is consequently established. The velocity of the soliton is also obtained in terms of these coefficients. These time-dependent coefficients, which must be Riemann-integrable, are otherwise arbitrary.","PeriodicalId":106270,"journal":{"name":"Optics and Photonics Letters","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OPTICAL SOLITONS IN 1 + 2 DIMENSIONS WITH TIME-DEPENDENT DISPERSION, NONLINEARITY AND ATTENUATION IN A POWER LAW MEDIUM\",\"authors\":\"A. Biswas, E. Zerrad\",\"doi\":\"10.1142/S1793528808000021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies optical solitons in 1 + 2 dimensions with power law nonlinearity in the presence of time-dependent coefficients of dispersion, nonlinearity and attenuation. The one-soliton solution to the governing nonlinear Schrodinger equation is obtained and the constraint relation between these coefficients is consequently established. The velocity of the soliton is also obtained in terms of these coefficients. These time-dependent coefficients, which must be Riemann-integrable, are otherwise arbitrary.\",\"PeriodicalId\":106270,\"journal\":{\"name\":\"Optics and Photonics Letters\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Photonics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1793528808000021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Photonics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793528808000021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有幂律非线性的1 + 2维光学孤子在色散、非线性和衰减等时变系数存在下的特性。得到了非线性薛定谔方程的单孤子解,从而建立了这些系数之间的约束关系。孤子的速度也可以用这些系数来表示。这些随时间变化的系数,必须是黎曼可积的,否则就是任意的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OPTICAL SOLITONS IN 1 + 2 DIMENSIONS WITH TIME-DEPENDENT DISPERSION, NONLINEARITY AND ATTENUATION IN A POWER LAW MEDIUM
This paper studies optical solitons in 1 + 2 dimensions with power law nonlinearity in the presence of time-dependent coefficients of dispersion, nonlinearity and attenuation. The one-soliton solution to the governing nonlinear Schrodinger equation is obtained and the constraint relation between these coefficients is consequently established. The velocity of the soliton is also obtained in terms of these coefficients. These time-dependent coefficients, which must be Riemann-integrable, are otherwise arbitrary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信