{"title":"圆柱形微波腔腔腔内氦、氩阻挡放电大气等离子体射流的诊断","authors":"A. Astafiev, A. Altmark, N. Lesiv, A. Chirtsov","doi":"10.32603/1993-8985-2023-26-3-122-135","DOIUrl":null,"url":null,"abstract":"Introduction. Technologies related to the use of low-temperature atmospheric plasmas are developing at a rapid pace. Creation of new low-temperature plasma sources for specific applications requires monitoring of dynamic processes in such discharges with a high time resolution. Electron concentration is one the most important plasma characteristics, which can be very low for a low-temperature atmospheric pressure plasma. However, the methods currently available for diagnostics of gas-discharge plasmas are either characterized by insufficient sensitivity or unable to monitor dynamic processes in non-stationary discharges. In this regard, the development of new diagnostic approaches to low-temperature atmospheric plasma seems to be a relevant research direction.Aim. To develop a diagnostic method for an atmospheric plasma with a low gas temperature and a low electron concentration in a cylindrical microwave resonator.Materials and methods. The proposed diagnostic method is based on the well-known principle of measuring the frequency shift and the Q-factor of the eigenmodes of the microwave resonator, inside which the plasma under study is located.Results. Measurements of the atmospheric barrier discharge plasma jets in a helium and argon stream in a cylindrical microwave resonator were performed. The proposed geometry made it possible to significantly increase the sensitivity of measurements. It became possible to exclude the effect of polarization degeneracy in a round cylindrical resonator. The developed system was also tested on test objects with a known value of permittivity.Conclusion. A method for microwave diagnostics of stationary and non-stationary cold atmospheric plasma jets in a cylindrical resonator, inside which transmitting and receiving antennas are installed, as well as an orthogonal thin conductor preventing the excitation of undesirable modes, was developed.","PeriodicalId":217555,"journal":{"name":"Journal of the Russian Universities. Radioelectronics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnostics of Atmospheric Plasma Jets of Helium and Argon Barrier Discharge in a Cylindrical Microwave Cavity Resonator\",\"authors\":\"A. Astafiev, A. Altmark, N. Lesiv, A. Chirtsov\",\"doi\":\"10.32603/1993-8985-2023-26-3-122-135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. Technologies related to the use of low-temperature atmospheric plasmas are developing at a rapid pace. Creation of new low-temperature plasma sources for specific applications requires monitoring of dynamic processes in such discharges with a high time resolution. Electron concentration is one the most important plasma characteristics, which can be very low for a low-temperature atmospheric pressure plasma. However, the methods currently available for diagnostics of gas-discharge plasmas are either characterized by insufficient sensitivity or unable to monitor dynamic processes in non-stationary discharges. In this regard, the development of new diagnostic approaches to low-temperature atmospheric plasma seems to be a relevant research direction.Aim. To develop a diagnostic method for an atmospheric plasma with a low gas temperature and a low electron concentration in a cylindrical microwave resonator.Materials and methods. The proposed diagnostic method is based on the well-known principle of measuring the frequency shift and the Q-factor of the eigenmodes of the microwave resonator, inside which the plasma under study is located.Results. Measurements of the atmospheric barrier discharge plasma jets in a helium and argon stream in a cylindrical microwave resonator were performed. The proposed geometry made it possible to significantly increase the sensitivity of measurements. It became possible to exclude the effect of polarization degeneracy in a round cylindrical resonator. The developed system was also tested on test objects with a known value of permittivity.Conclusion. A method for microwave diagnostics of stationary and non-stationary cold atmospheric plasma jets in a cylindrical resonator, inside which transmitting and receiving antennas are installed, as well as an orthogonal thin conductor preventing the excitation of undesirable modes, was developed.\",\"PeriodicalId\":217555,\"journal\":{\"name\":\"Journal of the Russian Universities. Radioelectronics\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Russian Universities. Radioelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32603/1993-8985-2023-26-3-122-135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Russian Universities. Radioelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32603/1993-8985-2023-26-3-122-135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diagnostics of Atmospheric Plasma Jets of Helium and Argon Barrier Discharge in a Cylindrical Microwave Cavity Resonator
Introduction. Technologies related to the use of low-temperature atmospheric plasmas are developing at a rapid pace. Creation of new low-temperature plasma sources for specific applications requires monitoring of dynamic processes in such discharges with a high time resolution. Electron concentration is one the most important plasma characteristics, which can be very low for a low-temperature atmospheric pressure plasma. However, the methods currently available for diagnostics of gas-discharge plasmas are either characterized by insufficient sensitivity or unable to monitor dynamic processes in non-stationary discharges. In this regard, the development of new diagnostic approaches to low-temperature atmospheric plasma seems to be a relevant research direction.Aim. To develop a diagnostic method for an atmospheric plasma with a low gas temperature and a low electron concentration in a cylindrical microwave resonator.Materials and methods. The proposed diagnostic method is based on the well-known principle of measuring the frequency shift and the Q-factor of the eigenmodes of the microwave resonator, inside which the plasma under study is located.Results. Measurements of the atmospheric barrier discharge plasma jets in a helium and argon stream in a cylindrical microwave resonator were performed. The proposed geometry made it possible to significantly increase the sensitivity of measurements. It became possible to exclude the effect of polarization degeneracy in a round cylindrical resonator. The developed system was also tested on test objects with a known value of permittivity.Conclusion. A method for microwave diagnostics of stationary and non-stationary cold atmospheric plasma jets in a cylindrical resonator, inside which transmitting and receiving antennas are installed, as well as an orthogonal thin conductor preventing the excitation of undesirable modes, was developed.