从学习曲线学习:发现可解释的学习轨迹

Lujie Chen, A. Dubrawski
{"title":"从学习曲线学习:发现可解释的学习轨迹","authors":"Lujie Chen, A. Dubrawski","doi":"10.1145/3027385.3029449","DOIUrl":null,"url":null,"abstract":"We propose a data driven method for decomposing population level learning curve models into mutually exclusive distinctive groups each consisting of similar learning trajectories. We validate this method on six knowledge components from the log data from an online tutoring system ASSIST-ment. Preliminary analysis reveals interpretable patterns of \"skill growth\" that correlate with students' performance in the subsequently administered state standardized tests.","PeriodicalId":162301,"journal":{"name":"International Conference on Learning Analytics and Knowledge","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning from learning curves: discovering interpretable learning trajectories\",\"authors\":\"Lujie Chen, A. Dubrawski\",\"doi\":\"10.1145/3027385.3029449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a data driven method for decomposing population level learning curve models into mutually exclusive distinctive groups each consisting of similar learning trajectories. We validate this method on six knowledge components from the log data from an online tutoring system ASSIST-ment. Preliminary analysis reveals interpretable patterns of \\\"skill growth\\\" that correlate with students' performance in the subsequently administered state standardized tests.\",\"PeriodicalId\":162301,\"journal\":{\"name\":\"International Conference on Learning Analytics and Knowledge\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Learning Analytics and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3027385.3029449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Learning Analytics and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3027385.3029449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种数据驱动的方法,将人口水平的学习曲线模型分解为相互排斥的独特组,每个组由相似的学习轨迹组成。我们从在线辅导系统assistment的日志数据中验证了该方法的六个知识组件。初步分析揭示了与学生在随后进行的国家标准化考试中的表现相关的可解释的“技能增长”模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning from learning curves: discovering interpretable learning trajectories
We propose a data driven method for decomposing population level learning curve models into mutually exclusive distinctive groups each consisting of similar learning trajectories. We validate this method on six knowledge components from the log data from an online tutoring system ASSIST-ment. Preliminary analysis reveals interpretable patterns of "skill growth" that correlate with students' performance in the subsequently administered state standardized tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信