{"title":"从学习曲线学习:发现可解释的学习轨迹","authors":"Lujie Chen, A. Dubrawski","doi":"10.1145/3027385.3029449","DOIUrl":null,"url":null,"abstract":"We propose a data driven method for decomposing population level learning curve models into mutually exclusive distinctive groups each consisting of similar learning trajectories. We validate this method on six knowledge components from the log data from an online tutoring system ASSIST-ment. Preliminary analysis reveals interpretable patterns of \"skill growth\" that correlate with students' performance in the subsequently administered state standardized tests.","PeriodicalId":162301,"journal":{"name":"International Conference on Learning Analytics and Knowledge","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning from learning curves: discovering interpretable learning trajectories\",\"authors\":\"Lujie Chen, A. Dubrawski\",\"doi\":\"10.1145/3027385.3029449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a data driven method for decomposing population level learning curve models into mutually exclusive distinctive groups each consisting of similar learning trajectories. We validate this method on six knowledge components from the log data from an online tutoring system ASSIST-ment. Preliminary analysis reveals interpretable patterns of \\\"skill growth\\\" that correlate with students' performance in the subsequently administered state standardized tests.\",\"PeriodicalId\":162301,\"journal\":{\"name\":\"International Conference on Learning Analytics and Knowledge\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Learning Analytics and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3027385.3029449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Learning Analytics and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3027385.3029449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning from learning curves: discovering interpretable learning trajectories
We propose a data driven method for decomposing population level learning curve models into mutually exclusive distinctive groups each consisting of similar learning trajectories. We validate this method on six knowledge components from the log data from an online tutoring system ASSIST-ment. Preliminary analysis reveals interpretable patterns of "skill growth" that correlate with students' performance in the subsequently administered state standardized tests.