文本数据的概念级情感分析技术综述

Samira Zad, Maryam Heidari, James H. Jones, Özlem Uzuner
{"title":"文本数据的概念级情感分析技术综述","authors":"Samira Zad, Maryam Heidari, James H. Jones, Özlem Uzuner","doi":"10.1109/AIIoT52608.2021.9454169","DOIUrl":null,"url":null,"abstract":"Text mining is one of the branches of data mining and refers to as the computing process of finding new patterns and relations among datasets which appear not to be related. Data mining is an interdisciplinary field which uses statistics, artificial intelligence, and database systems to generate new tools for discovering patterns among datasets. Similarly, when dealing with textual data, we need to use various methods in different branches of computer science (e.g. linguistics) and statistics. This study reviews the techniques of text-based sentiment analysis pipeline including preprocessing, aspect extraction, feature selection, and classification techniques used by scholars recently. It also surveys different applications of semantic analysis in the context of social media, marketing, and product reviews.","PeriodicalId":443405,"journal":{"name":"2021 IEEE World AI IoT Congress (AIIoT)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"A Survey on Concept-Level Sentiment Analysis Techniques of Textual Data\",\"authors\":\"Samira Zad, Maryam Heidari, James H. Jones, Özlem Uzuner\",\"doi\":\"10.1109/AIIoT52608.2021.9454169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text mining is one of the branches of data mining and refers to as the computing process of finding new patterns and relations among datasets which appear not to be related. Data mining is an interdisciplinary field which uses statistics, artificial intelligence, and database systems to generate new tools for discovering patterns among datasets. Similarly, when dealing with textual data, we need to use various methods in different branches of computer science (e.g. linguistics) and statistics. This study reviews the techniques of text-based sentiment analysis pipeline including preprocessing, aspect extraction, feature selection, and classification techniques used by scholars recently. It also surveys different applications of semantic analysis in the context of social media, marketing, and product reviews.\",\"PeriodicalId\":443405,\"journal\":{\"name\":\"2021 IEEE World AI IoT Congress (AIIoT)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE World AI IoT Congress (AIIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIIoT52608.2021.9454169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIIoT52608.2021.9454169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

文本挖掘是数据挖掘的一个分支,是指在看似不相关的数据集之间发现新的模式和关系的计算过程。数据挖掘是一个跨学科领域,它使用统计学、人工智能和数据库系统来生成用于发现数据集之间模式的新工具。同样,在处理文本数据时,我们需要使用计算机科学(如语言学)和统计学的不同分支中的各种方法。本文综述了近年来学者们使用的基于文本的情感分析管道技术,包括预处理技术、方面提取技术、特征选择技术和分类技术。它还调查了语义分析在社交媒体、市场营销和产品评论中的不同应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey on Concept-Level Sentiment Analysis Techniques of Textual Data
Text mining is one of the branches of data mining and refers to as the computing process of finding new patterns and relations among datasets which appear not to be related. Data mining is an interdisciplinary field which uses statistics, artificial intelligence, and database systems to generate new tools for discovering patterns among datasets. Similarly, when dealing with textual data, we need to use various methods in different branches of computer science (e.g. linguistics) and statistics. This study reviews the techniques of text-based sentiment analysis pipeline including preprocessing, aspect extraction, feature selection, and classification techniques used by scholars recently. It also surveys different applications of semantic analysis in the context of social media, marketing, and product reviews.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信