{"title":"具有最小方差波束形成和尖峰反卷积的高分辨率合成孔径超声成像","authors":"Junseob Shin, Lianjie Huang","doi":"10.1117/12.2217212","DOIUrl":null,"url":null,"abstract":"Minimum variance beamforming (MVBF) is an adaptive beamforming technique, which aims to improve the lateral resolution by computing and applying signal-dependent apodization rather than predetermined apodization as typically done in conventional delay-and-sum (DAS) beamforming. Although studies have shown that the improvement in lateral resolution associated with MVBF is significant, the axial resolution remains unaffected. In this work, we combine MVBF and spiking deconvolution to improve both lateral and axial resolutions in synthetic aperture ultrasound imaging. We implement our new method and evaluate its performance using experimental datasets from a tissue-mimicking phantom. Our results show that our new method yields improved axial and lateral resolutions as well as image contrast.","PeriodicalId":228011,"journal":{"name":"SPIE Medical Imaging","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"High-resolution synthetic aperture ultrasound imaging with minimum variance beamforming and spiking deconvolution\",\"authors\":\"Junseob Shin, Lianjie Huang\",\"doi\":\"10.1117/12.2217212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Minimum variance beamforming (MVBF) is an adaptive beamforming technique, which aims to improve the lateral resolution by computing and applying signal-dependent apodization rather than predetermined apodization as typically done in conventional delay-and-sum (DAS) beamforming. Although studies have shown that the improvement in lateral resolution associated with MVBF is significant, the axial resolution remains unaffected. In this work, we combine MVBF and spiking deconvolution to improve both lateral and axial resolutions in synthetic aperture ultrasound imaging. We implement our new method and evaluate its performance using experimental datasets from a tissue-mimicking phantom. Our results show that our new method yields improved axial and lateral resolutions as well as image contrast.\",\"PeriodicalId\":228011,\"journal\":{\"name\":\"SPIE Medical Imaging\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Medical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2217212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Medical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2217212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-resolution synthetic aperture ultrasound imaging with minimum variance beamforming and spiking deconvolution
Minimum variance beamforming (MVBF) is an adaptive beamforming technique, which aims to improve the lateral resolution by computing and applying signal-dependent apodization rather than predetermined apodization as typically done in conventional delay-and-sum (DAS) beamforming. Although studies have shown that the improvement in lateral resolution associated with MVBF is significant, the axial resolution remains unaffected. In this work, we combine MVBF and spiking deconvolution to improve both lateral and axial resolutions in synthetic aperture ultrasound imaging. We implement our new method and evaluate its performance using experimental datasets from a tissue-mimicking phantom. Our results show that our new method yields improved axial and lateral resolutions as well as image contrast.