{"title":"拉伸应变自组装:用于红外光电子和量子光学的可调谐纳米材料","authors":"P. Simmonds","doi":"10.1109/RAPID49481.2020.9195685","DOIUrl":null,"url":null,"abstract":"Discovered recently, tensile-strained quantum dots are optically active, defect-free nanostructures. Large tensile strains allow us to tailor band structures for applications from tunable infrared emitters to entangled photon sources. I will discuss the history, current state-of-the-art, and future directions of this rapidly expanding research field.","PeriodicalId":220244,"journal":{"name":"2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensile-strained self-assembly: Tunable nanomaterials for infrared optoelectronics and quantum optics\",\"authors\":\"P. Simmonds\",\"doi\":\"10.1109/RAPID49481.2020.9195685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discovered recently, tensile-strained quantum dots are optically active, defect-free nanostructures. Large tensile strains allow us to tailor band structures for applications from tunable infrared emitters to entangled photon sources. I will discuss the history, current state-of-the-art, and future directions of this rapidly expanding research field.\",\"PeriodicalId\":220244,\"journal\":{\"name\":\"2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAPID49481.2020.9195685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAPID49481.2020.9195685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tensile-strained self-assembly: Tunable nanomaterials for infrared optoelectronics and quantum optics
Discovered recently, tensile-strained quantum dots are optically active, defect-free nanostructures. Large tensile strains allow us to tailor band structures for applications from tunable infrared emitters to entangled photon sources. I will discuss the history, current state-of-the-art, and future directions of this rapidly expanding research field.