一种采用90nm CMOS的10Gb/s峰值控制有源电感结构

Y. Lee, S. Sheikhaei, S. Mirabbasi
{"title":"一种采用90nm CMOS的10Gb/s峰值控制有源电感结构","authors":"Y. Lee, S. Sheikhaei, S. Mirabbasi","doi":"10.1109/ASSCC.2008.4708770","DOIUrl":null,"url":null,"abstract":"A PMOS-based active inductor circuit for high-speed I/O applications is presented. The active inductor can operate with low voltage headroom and requires no voltage boosting. A prototype output driver circuit using the active inductor is implemented in 90 nm CMOS. The peaking frequency and its corresponding gain magnitude of the active-inductor circuit can be adjusted to facilitate channel loss compensation. Operating at 10 Gb/s over a 6-in FR4 channel, as compared to the case when the active-inductor structure is disabled, the use of active inductor circuit in the transmitter side increases the vertical eye opening at the receiver side by a factor of two and reduces the peak-to-peak jitter of the received data by 30%. By keeping the current of the active inductor above a certain value, impedance variations are minimized and appropriate impedance matching is achieved (S22 less than -10 dB). The active-inductor circuit occupies 17 times 25 mum2 and has a low overhead power consumption of 0.8 mW, i.e., ~10% of the overall power of the prototype output driver.","PeriodicalId":143173,"journal":{"name":"2008 IEEE Asian Solid-State Circuits Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A 10Gb/s active-inductor structure with peaking control in 90nm CMOS\",\"authors\":\"Y. Lee, S. Sheikhaei, S. Mirabbasi\",\"doi\":\"10.1109/ASSCC.2008.4708770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A PMOS-based active inductor circuit for high-speed I/O applications is presented. The active inductor can operate with low voltage headroom and requires no voltage boosting. A prototype output driver circuit using the active inductor is implemented in 90 nm CMOS. The peaking frequency and its corresponding gain magnitude of the active-inductor circuit can be adjusted to facilitate channel loss compensation. Operating at 10 Gb/s over a 6-in FR4 channel, as compared to the case when the active-inductor structure is disabled, the use of active inductor circuit in the transmitter side increases the vertical eye opening at the receiver side by a factor of two and reduces the peak-to-peak jitter of the received data by 30%. By keeping the current of the active inductor above a certain value, impedance variations are minimized and appropriate impedance matching is achieved (S22 less than -10 dB). The active-inductor circuit occupies 17 times 25 mum2 and has a low overhead power consumption of 0.8 mW, i.e., ~10% of the overall power of the prototype output driver.\",\"PeriodicalId\":143173,\"journal\":{\"name\":\"2008 IEEE Asian Solid-State Circuits Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Asian Solid-State Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASSCC.2008.4708770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Asian Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2008.4708770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

提出了一种基于pmos的高速I/O有源电感电路。有源电感可以在低电压净空下工作,不需要电压升压。利用有源电感实现了90 nm CMOS输出驱动电路的原型。可以调节有源电感电路的峰值频率及其相应的增益幅度,以方便通道损耗补偿。在6英寸的FR4通道上以10gb /s的速度工作,与禁用有源电感结构的情况相比,在发送端使用有源电感电路将接收端的垂直开口增加了两倍,并将接收数据的峰间抖动减少了30%。通过将有源电感的电流保持在一定值以上,可以使阻抗变化最小化,实现适当的阻抗匹配(S22小于-10 dB)。有源电感电路占用17 × 25mm2,开销功耗为0.8 mW,约为原型输出驱动器总功率的10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 10Gb/s active-inductor structure with peaking control in 90nm CMOS
A PMOS-based active inductor circuit for high-speed I/O applications is presented. The active inductor can operate with low voltage headroom and requires no voltage boosting. A prototype output driver circuit using the active inductor is implemented in 90 nm CMOS. The peaking frequency and its corresponding gain magnitude of the active-inductor circuit can be adjusted to facilitate channel loss compensation. Operating at 10 Gb/s over a 6-in FR4 channel, as compared to the case when the active-inductor structure is disabled, the use of active inductor circuit in the transmitter side increases the vertical eye opening at the receiver side by a factor of two and reduces the peak-to-peak jitter of the received data by 30%. By keeping the current of the active inductor above a certain value, impedance variations are minimized and appropriate impedance matching is achieved (S22 less than -10 dB). The active-inductor circuit occupies 17 times 25 mum2 and has a low overhead power consumption of 0.8 mW, i.e., ~10% of the overall power of the prototype output driver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信