音乐类型分类的特征向量设计

Víctor Muñiz, J. B. O. S. Filho, Souza Filho
{"title":"音乐类型分类的特征向量设计","authors":"Víctor Muñiz, J. B. O. S. Filho, Souza Filho","doi":"10.1109/LA-CCI48322.2021.9769848","DOIUrl":null,"url":null,"abstract":"With the massive growth of digital music availability, it emerges the need of categorising them according to some tags, like the music genre. The development of automatic music genre classification systems have been a research target over the years. This work proposes to investigate the generation of a concise set of problem descriptive feature vectors, a relevant stage when developing most classification systems. It includes a comprehensive study conducted with the GTZAN Dataset, relatively to the quantity and quality of feature vectors necessary for an accurate music genre classification, considering a range of machine learning algorithms, such as the k-nearest neighbours, Multinomial Logistic Regression, Support Vector Machine, Random Forest, and Gradient Boosting. Additionally, the Structured Orthogonal Matching Pursuit, a recent feature selection technique, is evaluated to address this problem, leading to promising results.","PeriodicalId":431041,"journal":{"name":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"37 42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Feature Vector Design for Music Genre Classification\",\"authors\":\"Víctor Muñiz, J. B. O. S. Filho, Souza Filho\",\"doi\":\"10.1109/LA-CCI48322.2021.9769848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the massive growth of digital music availability, it emerges the need of categorising them according to some tags, like the music genre. The development of automatic music genre classification systems have been a research target over the years. This work proposes to investigate the generation of a concise set of problem descriptive feature vectors, a relevant stage when developing most classification systems. It includes a comprehensive study conducted with the GTZAN Dataset, relatively to the quantity and quality of feature vectors necessary for an accurate music genre classification, considering a range of machine learning algorithms, such as the k-nearest neighbours, Multinomial Logistic Regression, Support Vector Machine, Random Forest, and Gradient Boosting. Additionally, the Structured Orthogonal Matching Pursuit, a recent feature selection technique, is evaluated to address this problem, leading to promising results.\",\"PeriodicalId\":431041,\"journal\":{\"name\":\"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"volume\":\"37 42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LA-CCI48322.2021.9769848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI48322.2021.9769848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着数字音乐可用性的大量增长,需要根据一些标签对它们进行分类,比如音乐类型。音乐体裁自动分类系统的开发一直是多年来研究的目标。这项工作提出研究一组简明的问题描述性特征向量的生成,这是开发大多数分类系统时的一个相关阶段。它包括与GTZAN数据集进行的全面研究,相对于准确音乐类型分类所需的特征向量的数量和质量,考虑到一系列机器学习算法,如k近邻,多项逻辑回归,支持向量机,随机森林和梯度增强。此外,本文还评估了结构化正交匹配追踪(Structured Orthogonal Matching Pursuit)这一最新的特征选择技术来解决这一问题,并得出了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Vector Design for Music Genre Classification
With the massive growth of digital music availability, it emerges the need of categorising them according to some tags, like the music genre. The development of automatic music genre classification systems have been a research target over the years. This work proposes to investigate the generation of a concise set of problem descriptive feature vectors, a relevant stage when developing most classification systems. It includes a comprehensive study conducted with the GTZAN Dataset, relatively to the quantity and quality of feature vectors necessary for an accurate music genre classification, considering a range of machine learning algorithms, such as the k-nearest neighbours, Multinomial Logistic Regression, Support Vector Machine, Random Forest, and Gradient Boosting. Additionally, the Structured Orthogonal Matching Pursuit, a recent feature selection technique, is evaluated to address this problem, leading to promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信