Ornstein-Uhlenbeck过程驱动随机波动模型下欧式期权价格解析解的双边拉普拉斯变换替代形式

G. Christanto, B. Handari, H. Tasman
{"title":"Ornstein-Uhlenbeck过程驱动随机波动模型下欧式期权价格解析解的双边拉普拉斯变换替代形式","authors":"G. Christanto, B. Handari, H. Tasman","doi":"10.1063/1.5132452","DOIUrl":null,"url":null,"abstract":"Bilateral Laplace transform is known for its capability on taking Laplace transform over all real numbers. This paper provides a different approach by using inverse bilateral Laplace transform on deriving analytic solution of European option price formula, both call option and put option. Case of uncorrelated processes between asset price and volatility of Black-Scholes model of asset pricing with stochastic volatility driven by Ornstein-Uhlenbeck process is used to portray price of a risky asset in the market. This paper also provides proof for required formulations to derive the analytic solutions and reference for alternative forms of inverse bilateral Laplace transform.","PeriodicalId":376274,"journal":{"name":"PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES (ISCPMS2018)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Alternative form of analytic solution of European option price in model with stochastic volatility driven by Ornstein-Uhlenbeck process using bilateral Laplace transform\",\"authors\":\"G. Christanto, B. Handari, H. Tasman\",\"doi\":\"10.1063/1.5132452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bilateral Laplace transform is known for its capability on taking Laplace transform over all real numbers. This paper provides a different approach by using inverse bilateral Laplace transform on deriving analytic solution of European option price formula, both call option and put option. Case of uncorrelated processes between asset price and volatility of Black-Scholes model of asset pricing with stochastic volatility driven by Ornstein-Uhlenbeck process is used to portray price of a risky asset in the market. This paper also provides proof for required formulations to derive the analytic solutions and reference for alternative forms of inverse bilateral Laplace transform.\",\"PeriodicalId\":376274,\"journal\":{\"name\":\"PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES (ISCPMS2018)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES (ISCPMS2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5132452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES (ISCPMS2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5132452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

双侧拉普拉斯变换以其对所有实数进行拉普拉斯变换的能力而闻名。本文提出了一种不同的方法,利用双边拉普拉斯逆变换求取欧式期权(看涨期权和看跌期权)价格公式的解析解。采用Ornstein-Uhlenbeck过程驱动随机波动率的Black-Scholes资产定价模型,在资产价格与波动率不相关过程的情况下,描述了市场上风险资产的价格。本文还证明了导出解析解所需的公式,并提供了双侧拉普拉斯逆变换的备选形式的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alternative form of analytic solution of European option price in model with stochastic volatility driven by Ornstein-Uhlenbeck process using bilateral Laplace transform
Bilateral Laplace transform is known for its capability on taking Laplace transform over all real numbers. This paper provides a different approach by using inverse bilateral Laplace transform on deriving analytic solution of European option price formula, both call option and put option. Case of uncorrelated processes between asset price and volatility of Black-Scholes model of asset pricing with stochastic volatility driven by Ornstein-Uhlenbeck process is used to portray price of a risky asset in the market. This paper also provides proof for required formulations to derive the analytic solutions and reference for alternative forms of inverse bilateral Laplace transform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信