{"title":"风险价值组合优化问题的实用算法","authors":"M. Feng, A. Wächter, J. Staum","doi":"10.1080/21649502.2014.995214","DOIUrl":null,"url":null,"abstract":"This article compares algorithms for solving portfolio optimization problems involving value-at-risk (VaR). These problems can be formulated as mixed integer programs (MIPs) or as chance-constrained mathematical programs (CCMPs). We propose improvements to their state-of-the-art MIP formulations. We also specialize an algorithm for solving general CCMPs, featuring practical interpretations. We present numerical experiments on practical-scale VaR problems using various algorithms and provide practical advice for solving these problems.","PeriodicalId":438897,"journal":{"name":"Quantitative Finance Letters","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Practical algorithms for value-at-risk portfolio optimization problems\",\"authors\":\"M. Feng, A. Wächter, J. Staum\",\"doi\":\"10.1080/21649502.2014.995214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article compares algorithms for solving portfolio optimization problems involving value-at-risk (VaR). These problems can be formulated as mixed integer programs (MIPs) or as chance-constrained mathematical programs (CCMPs). We propose improvements to their state-of-the-art MIP formulations. We also specialize an algorithm for solving general CCMPs, featuring practical interpretations. We present numerical experiments on practical-scale VaR problems using various algorithms and provide practical advice for solving these problems.\",\"PeriodicalId\":438897,\"journal\":{\"name\":\"Quantitative Finance Letters\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Finance Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21649502.2014.995214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Finance Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21649502.2014.995214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Practical algorithms for value-at-risk portfolio optimization problems
This article compares algorithms for solving portfolio optimization problems involving value-at-risk (VaR). These problems can be formulated as mixed integer programs (MIPs) or as chance-constrained mathematical programs (CCMPs). We propose improvements to their state-of-the-art MIP formulations. We also specialize an algorithm for solving general CCMPs, featuring practical interpretations. We present numerical experiments on practical-scale VaR problems using various algorithms and provide practical advice for solving these problems.