基于OFDM的毫米波大规模MIMO系统的最优上行信道估计算法

Moufida Hajjaj, A. Mejri, R. Bouallègue, S. Hasnaoui
{"title":"基于OFDM的毫米波大规模MIMO系统的最优上行信道估计算法","authors":"Moufida Hajjaj, A. Mejri, R. Bouallègue, S. Hasnaoui","doi":"10.1109/ISCC.2018.8538581","DOIUrl":null,"url":null,"abstract":"Practical channel estimation algorithms for millimeter wave massive multiple-input multiple-output (mmWave massive MIMO) systems with huge number of antennas at the base station must achieve high spectrum efficiency. Furthermore, the uplink channel estimation becomes very challenging since the required pilot overhead used for channel estimation and feedback can be prohibitively large. In conventional channel estimation algorithms, the channel model is approximated using a virtual channel model with quantized angles of arrival/departure (AoA/AoD). In this paper, we consider the continually distributed AoA/AoD, we show that the mmWave massive MIMO channels share common cosparsity properties, and we propose a structured analysis compressive sensing (SACS) based algorithm which exploits those common cosparsity properties for channel estimation with low overhead. Simulation results show that our proposal can accurately estimate the channel with low overhead, and is capable of attaining the optimal Cramer-Rao Lower Bound (CRLB).","PeriodicalId":233592,"journal":{"name":"2018 IEEE Symposium on Computers and Communications (ISCC)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal Uplink Channel Estimation Algorithm for OFDM Based MmWave Massive MIMO Systems\",\"authors\":\"Moufida Hajjaj, A. Mejri, R. Bouallègue, S. Hasnaoui\",\"doi\":\"10.1109/ISCC.2018.8538581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Practical channel estimation algorithms for millimeter wave massive multiple-input multiple-output (mmWave massive MIMO) systems with huge number of antennas at the base station must achieve high spectrum efficiency. Furthermore, the uplink channel estimation becomes very challenging since the required pilot overhead used for channel estimation and feedback can be prohibitively large. In conventional channel estimation algorithms, the channel model is approximated using a virtual channel model with quantized angles of arrival/departure (AoA/AoD). In this paper, we consider the continually distributed AoA/AoD, we show that the mmWave massive MIMO channels share common cosparsity properties, and we propose a structured analysis compressive sensing (SACS) based algorithm which exploits those common cosparsity properties for channel estimation with low overhead. Simulation results show that our proposal can accurately estimate the channel with low overhead, and is capable of attaining the optimal Cramer-Rao Lower Bound (CRLB).\",\"PeriodicalId\":233592,\"journal\":{\"name\":\"2018 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC.2018.8538581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2018.8538581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

实用的毫米波海量多输入多输出(mmWave massive MIMO)系统信道估计算法必须达到较高的频谱效率。此外,上行信道估计变得非常具有挑战性,因为用于信道估计和反馈的所需导频开销可能非常大。在传统的信道估计算法中,信道模型是使用带有量化到达/离开角(AoA/AoD)的虚拟信道模型来逼近的。在本文中,我们考虑了连续分布的AoA/AoD,我们证明了毫米波大规模MIMO信道具有共同的协稀疏性,我们提出了一种基于结构化分析压缩感知(SACS)的算法,该算法利用这些共同的协稀疏性进行低开销的信道估计。仿真结果表明,该方法能够以较低的开销准确估计信道,并能达到最优的Cramer-Rao下界(CRLB)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Uplink Channel Estimation Algorithm for OFDM Based MmWave Massive MIMO Systems
Practical channel estimation algorithms for millimeter wave massive multiple-input multiple-output (mmWave massive MIMO) systems with huge number of antennas at the base station must achieve high spectrum efficiency. Furthermore, the uplink channel estimation becomes very challenging since the required pilot overhead used for channel estimation and feedback can be prohibitively large. In conventional channel estimation algorithms, the channel model is approximated using a virtual channel model with quantized angles of arrival/departure (AoA/AoD). In this paper, we consider the continually distributed AoA/AoD, we show that the mmWave massive MIMO channels share common cosparsity properties, and we propose a structured analysis compressive sensing (SACS) based algorithm which exploits those common cosparsity properties for channel estimation with low overhead. Simulation results show that our proposal can accurately estimate the channel with low overhead, and is capable of attaining the optimal Cramer-Rao Lower Bound (CRLB).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信