{"title":"基于深度学习的硅藻形态自动识别","authors":"Dana Lambert, R. Green","doi":"10.1109/IVCNZ51579.2020.9290564","DOIUrl":null,"url":null,"abstract":"This paper proposes a method to automatically identify diatom frustules using nine morphological categories. A total of 7092 images from NIWA and ADIAC with related taxa data were used to create training and test sets. Different augmentations and image processing methods were used on the training set to see if this would increase accuracy. Several CNNs were trained over a total of 50 epochs and the highest accuracy model was saved based on the validation set. Resnet-50 produced the highest accuracy of 94%, which is not as accurate as a similar study that achieved 99%, although this was for a slightly different classification problem.","PeriodicalId":164317,"journal":{"name":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","volume":"29 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automatic Identification of Diatom Morphology using Deep Learning\",\"authors\":\"Dana Lambert, R. Green\",\"doi\":\"10.1109/IVCNZ51579.2020.9290564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method to automatically identify diatom frustules using nine morphological categories. A total of 7092 images from NIWA and ADIAC with related taxa data were used to create training and test sets. Different augmentations and image processing methods were used on the training set to see if this would increase accuracy. Several CNNs were trained over a total of 50 epochs and the highest accuracy model was saved based on the validation set. Resnet-50 produced the highest accuracy of 94%, which is not as accurate as a similar study that achieved 99%, although this was for a slightly different classification problem.\",\"PeriodicalId\":164317,\"journal\":{\"name\":\"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)\",\"volume\":\"29 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVCNZ51579.2020.9290564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVCNZ51579.2020.9290564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Identification of Diatom Morphology using Deep Learning
This paper proposes a method to automatically identify diatom frustules using nine morphological categories. A total of 7092 images from NIWA and ADIAC with related taxa data were used to create training and test sets. Different augmentations and image processing methods were used on the training set to see if this would increase accuracy. Several CNNs were trained over a total of 50 epochs and the highest accuracy model was saved based on the validation set. Resnet-50 produced the highest accuracy of 94%, which is not as accurate as a similar study that achieved 99%, although this was for a slightly different classification problem.