基于四域雷达深度迁移学习的人体活动识别

Ahmad Alkasimi, Anh-Vu Pham, Christopher S. Gardner, B. Funsten
{"title":"基于四域雷达深度迁移学习的人体活动识别","authors":"Ahmad Alkasimi, Anh-Vu Pham, Christopher S. Gardner, B. Funsten","doi":"10.1109/RadarConf2351548.2023.10149668","DOIUrl":null,"url":null,"abstract":"We demonstrate the improvement of theradar-based human activity recognition using the combination of four datadomains: time-frequency, time-range, range-Doppler and, for the first time,time-angle domain. Six different activities are observed from nine subjectsusing frequency-modulated continuous-wave millimeter-wave radar. Each domainoffers additional information to the classification process. The classificationresults of four deep convolutional neural networks are then combined using theJoint Probability Mass Function method to achieve a combined classificationaccuracy of 100%. The proposed system also demonstrates similar performance inrecognizing activities from participants not involved in training the network.To the best of our knowledge, this is the first work that demonstrates theutilization of four data domains to address the radar-based human activityrecognition problem.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Activity Recognition Based on 4-Domain Radar Deep Transfer Learning\",\"authors\":\"Ahmad Alkasimi, Anh-Vu Pham, Christopher S. Gardner, B. Funsten\",\"doi\":\"10.1109/RadarConf2351548.2023.10149668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate the improvement of theradar-based human activity recognition using the combination of four datadomains: time-frequency, time-range, range-Doppler and, for the first time,time-angle domain. Six different activities are observed from nine subjectsusing frequency-modulated continuous-wave millimeter-wave radar. Each domainoffers additional information to the classification process. The classificationresults of four deep convolutional neural networks are then combined using theJoint Probability Mass Function method to achieve a combined classificationaccuracy of 100%. The proposed system also demonstrates similar performance inrecognizing activities from participants not involved in training the network.To the best of our knowledge, this is the first work that demonstrates theutilization of four data domains to address the radar-based human activityrecognition problem.\",\"PeriodicalId\":168311,\"journal\":{\"name\":\"2023 IEEE Radar Conference (RadarConf23)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Radar Conference (RadarConf23)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RadarConf2351548.2023.10149668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了基于雷达的人类活动识别的改进,使用四个数据域的组合:时频,时程,距离多普勒和时间角域,首次。使用调频连续波毫米波雷达对9名受试者观察到6种不同的活动。每个域都为分类过程提供了额外的信息。然后将四个深度卷积神经网络的分类结果使用联合概率质量函数方法进行组合,以实现100%的组合分类精度。所提出的系统在识别未参与训练网络的参与者的活动时也表现出类似的性能。据我们所知,这是第一个展示利用四个数据域来解决基于雷达的人类活动识别问题的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Activity Recognition Based on 4-Domain Radar Deep Transfer Learning
We demonstrate the improvement of theradar-based human activity recognition using the combination of four datadomains: time-frequency, time-range, range-Doppler and, for the first time,time-angle domain. Six different activities are observed from nine subjectsusing frequency-modulated continuous-wave millimeter-wave radar. Each domainoffers additional information to the classification process. The classificationresults of four deep convolutional neural networks are then combined using theJoint Probability Mass Function method to achieve a combined classificationaccuracy of 100%. The proposed system also demonstrates similar performance inrecognizing activities from participants not involved in training the network.To the best of our knowledge, this is the first work that demonstrates theutilization of four data domains to address the radar-based human activityrecognition problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信