一种基于项目的混合相似度协同过滤方法

S. Puntheeranurak, Thanut Chaiwitooanukool
{"title":"一种基于项目的混合相似度协同过滤方法","authors":"S. Puntheeranurak, Thanut Chaiwitooanukool","doi":"10.1109/ICSESS.2011.5982355","DOIUrl":null,"url":null,"abstract":"Item-based collaborative filtering is a preferred technique on recommender system. It uses a value of item rating similarity to predict user's preference. In this paper, we include values of item attribute similarity to adjust the predicted rating equation for target item. The results of Item-based collaborative filtering that hybrid item rating similarity and item attribute similarity techniques have Mean Absolute Error (MAE) less than a traditional Item-based collaborative filtering technique and others. The proposed algorithm is efficient to predict better than traditional algorithm as shown in our experiments.","PeriodicalId":108533,"journal":{"name":"2011 IEEE 2nd International Conference on Software Engineering and Service Science","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"An Item-based collaborative filtering method using Item-based hybrid similarity\",\"authors\":\"S. Puntheeranurak, Thanut Chaiwitooanukool\",\"doi\":\"10.1109/ICSESS.2011.5982355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Item-based collaborative filtering is a preferred technique on recommender system. It uses a value of item rating similarity to predict user's preference. In this paper, we include values of item attribute similarity to adjust the predicted rating equation for target item. The results of Item-based collaborative filtering that hybrid item rating similarity and item attribute similarity techniques have Mean Absolute Error (MAE) less than a traditional Item-based collaborative filtering technique and others. The proposed algorithm is efficient to predict better than traditional algorithm as shown in our experiments.\",\"PeriodicalId\":108533,\"journal\":{\"name\":\"2011 IEEE 2nd International Conference on Software Engineering and Service Science\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 2nd International Conference on Software Engineering and Service Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS.2011.5982355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 2nd International Conference on Software Engineering and Service Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2011.5982355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

基于项目的协同过滤是推荐系统的首选技术。它使用物品评级相似度的值来预测用户的偏好。在本文中,我们加入了物品属性相似度的值来调整目标物品的预测评分方程。项目评价相似度和项目属性相似度混合技术的协同过滤结果比传统的基于项目的协同过滤技术和其他技术具有更小的平均绝对误差。实验结果表明,该算法的预测效果优于传统算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Item-based collaborative filtering method using Item-based hybrid similarity
Item-based collaborative filtering is a preferred technique on recommender system. It uses a value of item rating similarity to predict user's preference. In this paper, we include values of item attribute similarity to adjust the predicted rating equation for target item. The results of Item-based collaborative filtering that hybrid item rating similarity and item attribute similarity techniques have Mean Absolute Error (MAE) less than a traditional Item-based collaborative filtering technique and others. The proposed algorithm is efficient to predict better than traditional algorithm as shown in our experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信