数理逻辑

I. Jebril, H. Dutta, Ilwoo Cho
{"title":"数理逻辑","authors":"I. Jebril, H. Dutta, Ilwoo Cho","doi":"10.1201/9780429022838-1","DOIUrl":null,"url":null,"abstract":"This paper is the second in a series of three culminating in an ordinal analysis of 2-comprehension. Its objective is to present an ordinal analysis for the subsystem of second order arithmetic with 2-comprehension, bar induction and 1 2-comprehension for formulae without set parameters. Couched in terms of Kripke-Platek set theory, KP, the latter system corresponds to KPi augmented by the assertion that there exists a stable ordinal, where KPi is KP with an additional axiom stating that every set is contained in an admissible set.","PeriodicalId":231325,"journal":{"name":"Concise Introduction to Logic and Set Theory","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Mathematical Logic\",\"authors\":\"I. Jebril, H. Dutta, Ilwoo Cho\",\"doi\":\"10.1201/9780429022838-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is the second in a series of three culminating in an ordinal analysis of 2-comprehension. Its objective is to present an ordinal analysis for the subsystem of second order arithmetic with 2-comprehension, bar induction and 1 2-comprehension for formulae without set parameters. Couched in terms of Kripke-Platek set theory, KP, the latter system corresponds to KPi augmented by the assertion that there exists a stable ordinal, where KPi is KP with an additional axiom stating that every set is contained in an admissible set.\",\"PeriodicalId\":231325,\"journal\":{\"name\":\"Concise Introduction to Logic and Set Theory\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concise Introduction to Logic and Set Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9780429022838-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concise Introduction to Logic and Set Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429022838-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Logic
This paper is the second in a series of three culminating in an ordinal analysis of 2-comprehension. Its objective is to present an ordinal analysis for the subsystem of second order arithmetic with 2-comprehension, bar induction and 1 2-comprehension for formulae without set parameters. Couched in terms of Kripke-Platek set theory, KP, the latter system corresponds to KPi augmented by the assertion that there exists a stable ordinal, where KPi is KP with an additional axiom stating that every set is contained in an admissible set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信