基于多层感知器分类器的土壤科学多光谱图像材料识别

Fabricio A. Breve, M. Ponti, N. Mascarenhas
{"title":"基于多层感知器分类器的土壤科学多光谱图像材料识别","authors":"Fabricio A. Breve, M. Ponti, N. Mascarenhas","doi":"10.1109/SIBGRAPI.2007.10","DOIUrl":null,"url":null,"abstract":"Classifier combination experiments using the multilayer perceptron (MLP) were carried out using noisy soil science multispectral images, which were obtained using a tomograph scanner. Using few units in the MLP hidden layer, images were classified using a single classifier. Later we used classifier combining techniques as bagging, decision templates (DT) and Dempster-Shafer (DS), in order to improve the performance of the single classifiers and also stabilize the performance of the multilayer perceptron. The classification results were evaluated using cross-validation. The results showed stabilization of Multilayer Perceptron and improved results were achieved with fewer units in the MLP hidden layer.","PeriodicalId":434632,"journal":{"name":"XX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2007)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Multilayer Perceptron Classifier Combination for Identification of Materials on Noisy Soil Science Multispectral Images\",\"authors\":\"Fabricio A. Breve, M. Ponti, N. Mascarenhas\",\"doi\":\"10.1109/SIBGRAPI.2007.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classifier combination experiments using the multilayer perceptron (MLP) were carried out using noisy soil science multispectral images, which were obtained using a tomograph scanner. Using few units in the MLP hidden layer, images were classified using a single classifier. Later we used classifier combining techniques as bagging, decision templates (DT) and Dempster-Shafer (DS), in order to improve the performance of the single classifiers and also stabilize the performance of the multilayer perceptron. The classification results were evaluated using cross-validation. The results showed stabilization of Multilayer Perceptron and improved results were achieved with fewer units in the MLP hidden layer.\",\"PeriodicalId\":434632,\"journal\":{\"name\":\"XX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2007)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"XX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBGRAPI.2007.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"XX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2007.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

利用层析扫描仪获取的土壤科学多光谱图像,进行了多层感知器分类器组合实验。利用MLP隐藏层中较少的单元,使用单个分类器对图像进行分类。为了提高单分类器的性能,同时稳定多层感知器的性能,我们使用了bagging、decision templates (DT)和Dempster-Shafer (DS)等分类器组合技术。采用交叉验证对分类结果进行评价。结果表明,多层感知器具有较好的稳定性,并且在MLP隐藏层中单元较少的情况下,得到了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multilayer Perceptron Classifier Combination for Identification of Materials on Noisy Soil Science Multispectral Images
Classifier combination experiments using the multilayer perceptron (MLP) were carried out using noisy soil science multispectral images, which were obtained using a tomograph scanner. Using few units in the MLP hidden layer, images were classified using a single classifier. Later we used classifier combining techniques as bagging, decision templates (DT) and Dempster-Shafer (DS), in order to improve the performance of the single classifiers and also stabilize the performance of the multilayer perceptron. The classification results were evaluated using cross-validation. The results showed stabilization of Multilayer Perceptron and improved results were achieved with fewer units in the MLP hidden layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信