在clustercube框架中增强了复杂数据库对象的集群

A. Cuzzocrea, Paolo Serafino
{"title":"在clustercube框架中增强了复杂数据库对象的集群","authors":"A. Cuzzocrea, Paolo Serafino","doi":"10.1145/2390045.2390066","DOIUrl":null,"url":null,"abstract":"This paper significantly extends our previous research contribution [1], where we introduced the OLAP-based ClustCube framework for clustering and mining complex database objects extracted from distributed database settings. In particular, in this research we provide the following two novel contributions over [1]. First, we provide an innovative tree-based distance function over complex objects that takes into account the typical tree-like nature of these objects in distributed database settings. This novel distance is a relevant contribution over the simpler low-level-field-based distance presented in [1]. Second, we provide a comprehensive experimental campaign of ClustCube algorithms for computing ClustCube cubes, according to both performance metrics and accuracy metrics, against a well-known benchmark data set, and in comparison with a state-of-the-art subspace clustering algorithm for high-dimensional data. Retrieved results clearly demonstrate the superiority of our approach.","PeriodicalId":335396,"journal":{"name":"International Workshop on Data Warehousing and OLAP","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Enhanced clustering of complex database objects in the clustcube framework\",\"authors\":\"A. Cuzzocrea, Paolo Serafino\",\"doi\":\"10.1145/2390045.2390066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper significantly extends our previous research contribution [1], where we introduced the OLAP-based ClustCube framework for clustering and mining complex database objects extracted from distributed database settings. In particular, in this research we provide the following two novel contributions over [1]. First, we provide an innovative tree-based distance function over complex objects that takes into account the typical tree-like nature of these objects in distributed database settings. This novel distance is a relevant contribution over the simpler low-level-field-based distance presented in [1]. Second, we provide a comprehensive experimental campaign of ClustCube algorithms for computing ClustCube cubes, according to both performance metrics and accuracy metrics, against a well-known benchmark data set, and in comparison with a state-of-the-art subspace clustering algorithm for high-dimensional data. Retrieved results clearly demonstrate the superiority of our approach.\",\"PeriodicalId\":335396,\"journal\":{\"name\":\"International Workshop on Data Warehousing and OLAP\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Data Warehousing and OLAP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2390045.2390066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Warehousing and OLAP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2390045.2390066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文极大地扩展了我们之前的研究贡献[1],在那里我们引入了基于olap的clustercube框架,用于聚类和挖掘从分布式数据库设置中提取的复杂数据库对象。特别是,在本研究中,我们在[1]上提供了以下两个新颖的贡献。首先,我们为复杂对象提供了一个创新的基于树的距离函数,该函数考虑了分布式数据库设置中这些对象的典型树状性质。这种新颖的距离是对[1]中提出的更简单的低水平场距离的相关贡献。其次,我们根据性能指标和精度指标,针对一个知名的基准数据集,并与最先进的高维数据子空间聚类算法进行比较,提供了用于计算ClustCube立方体的ClustCube算法的全面实验活动。检索结果清楚地证明了我们方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced clustering of complex database objects in the clustcube framework
This paper significantly extends our previous research contribution [1], where we introduced the OLAP-based ClustCube framework for clustering and mining complex database objects extracted from distributed database settings. In particular, in this research we provide the following two novel contributions over [1]. First, we provide an innovative tree-based distance function over complex objects that takes into account the typical tree-like nature of these objects in distributed database settings. This novel distance is a relevant contribution over the simpler low-level-field-based distance presented in [1]. Second, we provide a comprehensive experimental campaign of ClustCube algorithms for computing ClustCube cubes, according to both performance metrics and accuracy metrics, against a well-known benchmark data set, and in comparison with a state-of-the-art subspace clustering algorithm for high-dimensional data. Retrieved results clearly demonstrate the superiority of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信