基于增强TF-DIF朴素贝叶斯分类器的Twitter情感分析

M. Sindhuja, Kuriseti Sai Nitin, Kotharu Srujana Devi
{"title":"基于增强TF-DIF朴素贝叶斯分类器的Twitter情感分析","authors":"M. Sindhuja, Kuriseti Sai Nitin, Kotharu Srujana Devi","doi":"10.1109/ICCMC56507.2023.10084106","DOIUrl":null,"url":null,"abstract":"Public and private opinions on a wide range of topics are expressed and regularly disseminated through several social media channels. One of the social media platforms that is growing in popularity is Twitter. The emotional impact of a person plays an important role in daily life. The method of assessing a person's opinions and thought polarity is known as sentiment analysis. Here, this study addresses the sentiment classification problem on the Twitter dataset. A number of text preprocessing methods and Naive Bayes (NB) classifiers is used to perform sentiment analysis in the proposed system. Preprocessing procedures typically involve eliminating stop words, changing the case of the words to make them more normal, and using stemming or lemmatization. Twitter Sentiment Analysis is a method used for analyzing emotions from tweets. Tweets are useful in obtaining sentiment values from a user. The data provides an indication of polarity as positive, negative or unbiased values.","PeriodicalId":197059,"journal":{"name":"2023 7th International Conference on Computing Methodologies and Communication (ICCMC)","volume":"45 6 Pt 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Twitter Sentiment Analysis using Enhanced TF-DIF Naive Bayes Classifier Approach\",\"authors\":\"M. Sindhuja, Kuriseti Sai Nitin, Kotharu Srujana Devi\",\"doi\":\"10.1109/ICCMC56507.2023.10084106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Public and private opinions on a wide range of topics are expressed and regularly disseminated through several social media channels. One of the social media platforms that is growing in popularity is Twitter. The emotional impact of a person plays an important role in daily life. The method of assessing a person's opinions and thought polarity is known as sentiment analysis. Here, this study addresses the sentiment classification problem on the Twitter dataset. A number of text preprocessing methods and Naive Bayes (NB) classifiers is used to perform sentiment analysis in the proposed system. Preprocessing procedures typically involve eliminating stop words, changing the case of the words to make them more normal, and using stemming or lemmatization. Twitter Sentiment Analysis is a method used for analyzing emotions from tweets. Tweets are useful in obtaining sentiment values from a user. The data provides an indication of polarity as positive, negative or unbiased values.\",\"PeriodicalId\":197059,\"journal\":{\"name\":\"2023 7th International Conference on Computing Methodologies and Communication (ICCMC)\",\"volume\":\"45 6 Pt 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 7th International Conference on Computing Methodologies and Communication (ICCMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCMC56507.2023.10084106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC56507.2023.10084106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

公众和私人对广泛议题的意见通过多个社交媒体渠道表达和定期传播。越来越受欢迎的社交媒体平台之一是Twitter。一个人的情感影响在日常生活中起着重要的作用。评估一个人的观点和思想极性的方法被称为情绪分析。在这里,本研究解决了Twitter数据集上的情感分类问题。该系统采用了多种文本预处理方法和朴素贝叶斯分类器进行情感分析。预处理过程通常包括消除停止词,改变单词的大小写使其更正常,以及使用词干化或词素化。推特情绪分析是一种分析推文情绪的方法。tweet对于获取用户的情感值很有用。数据提供极性指示为正、负或无偏值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twitter Sentiment Analysis using Enhanced TF-DIF Naive Bayes Classifier Approach
Public and private opinions on a wide range of topics are expressed and regularly disseminated through several social media channels. One of the social media platforms that is growing in popularity is Twitter. The emotional impact of a person plays an important role in daily life. The method of assessing a person's opinions and thought polarity is known as sentiment analysis. Here, this study addresses the sentiment classification problem on the Twitter dataset. A number of text preprocessing methods and Naive Bayes (NB) classifiers is used to perform sentiment analysis in the proposed system. Preprocessing procedures typically involve eliminating stop words, changing the case of the words to make them more normal, and using stemming or lemmatization. Twitter Sentiment Analysis is a method used for analyzing emotions from tweets. Tweets are useful in obtaining sentiment values from a user. The data provides an indication of polarity as positive, negative or unbiased values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信