基于离线简化模型加速度数据的移动步态卡上匹配认证

R. Findling, M. Hölzl, R. Mayrhofer
{"title":"基于离线简化模型加速度数据的移动步态卡上匹配认证","authors":"R. Findling, M. Hölzl, R. Mayrhofer","doi":"10.1145/3007120.3007132","DOIUrl":null,"url":null,"abstract":"Biometrics have become important for authentication on mobile devices, e.g. to unlock devices before using them. One way to protect biometric information stored on mobile devices from disclosure is using embedded smart cards (SCs) with biometric match-on-card (MOC) approaches. Computational restrictions of SCs thereby also limit biometric matching procedures. We present a mobile MOC approach that uses offline training to obtain authentication models with a simplistic internal representation in the final trained state, whereat we adapt features and model representation to enable their usage on SCs. The obtained model is used within SCs on mobile devices without requiring retraining when enrolling individual users. We apply our approach to acceleration based mobile gait authentication, using a 16 bit integer range Java Card, and evaluate authentication performance and computation time on the SC using a publicly available dataset. Results indicate that our approach is feasible with an equal error rate of ~12% and a computation time below 2s on the SC, including data transmissions and computations. To the best of our knowledge, this thereby represents the first practically feasible approach towards acceleration based gait match-on-card authentication.","PeriodicalId":394387,"journal":{"name":"Proceedings of the 14th International Conference on Advances in Mobile Computing and Multi Media","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Mobile Gait Match-on-Card Authentication from Acceleration Data with Offline-Simplified Models\",\"authors\":\"R. Findling, M. Hölzl, R. Mayrhofer\",\"doi\":\"10.1145/3007120.3007132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biometrics have become important for authentication on mobile devices, e.g. to unlock devices before using them. One way to protect biometric information stored on mobile devices from disclosure is using embedded smart cards (SCs) with biometric match-on-card (MOC) approaches. Computational restrictions of SCs thereby also limit biometric matching procedures. We present a mobile MOC approach that uses offline training to obtain authentication models with a simplistic internal representation in the final trained state, whereat we adapt features and model representation to enable their usage on SCs. The obtained model is used within SCs on mobile devices without requiring retraining when enrolling individual users. We apply our approach to acceleration based mobile gait authentication, using a 16 bit integer range Java Card, and evaluate authentication performance and computation time on the SC using a publicly available dataset. Results indicate that our approach is feasible with an equal error rate of ~12% and a computation time below 2s on the SC, including data transmissions and computations. To the best of our knowledge, this thereby represents the first practically feasible approach towards acceleration based gait match-on-card authentication.\",\"PeriodicalId\":394387,\"journal\":{\"name\":\"Proceedings of the 14th International Conference on Advances in Mobile Computing and Multi Media\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 14th International Conference on Advances in Mobile Computing and Multi Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3007120.3007132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th International Conference on Advances in Mobile Computing and Multi Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3007120.3007132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

生物识别技术对于移动设备的身份验证已经变得非常重要,例如在使用设备之前解锁设备。保护存储在移动设备上的生物特征信息不被泄露的一种方法是使用带有生物特征匹配卡(MOC)方法的嵌入式智能卡(sc)。因此,SCs的计算限制也限制了生物识别匹配程序。我们提出了一种移动MOC方法,该方法使用离线训练来获得在最终训练状态下具有简单内部表示的身份验证模型,其中我们调整特征和模型表示以使其能够在sc上使用。获得的模型在移动设备上的SCs中使用,而不需要在注册个人用户时进行再培训。我们将我们的方法应用于基于加速度的移动步态认证,使用16位整数范围的Java卡,并使用公开可用的数据集评估SC上的认证性能和计算时间。结果表明,我们的方法是可行的,在SC上,包括数据传输和计算在内,错误率在12%左右,计算时间在2s以下。据我们所知,这代表了第一个实际可行的方法,以加速为基础的步态匹配卡认证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mobile Gait Match-on-Card Authentication from Acceleration Data with Offline-Simplified Models
Biometrics have become important for authentication on mobile devices, e.g. to unlock devices before using them. One way to protect biometric information stored on mobile devices from disclosure is using embedded smart cards (SCs) with biometric match-on-card (MOC) approaches. Computational restrictions of SCs thereby also limit biometric matching procedures. We present a mobile MOC approach that uses offline training to obtain authentication models with a simplistic internal representation in the final trained state, whereat we adapt features and model representation to enable their usage on SCs. The obtained model is used within SCs on mobile devices without requiring retraining when enrolling individual users. We apply our approach to acceleration based mobile gait authentication, using a 16 bit integer range Java Card, and evaluate authentication performance and computation time on the SC using a publicly available dataset. Results indicate that our approach is feasible with an equal error rate of ~12% and a computation time below 2s on the SC, including data transmissions and computations. To the best of our knowledge, this thereby represents the first practically feasible approach towards acceleration based gait match-on-card authentication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信