反宇称时间对称陀螺仪的间接耦合光学谐振器

Martino De Carlo, F. De Leonardis, F. Dell’Olio, Pietro Peliti, Fabrizio Berton, Mario Lucchesini, V. Passaro
{"title":"反宇称时间对称陀螺仪的间接耦合光学谐振器","authors":"Martino De Carlo, F. De Leonardis, F. Dell’Olio, Pietro Peliti, Fabrizio Berton, Mario Lucchesini, V. Passaro","doi":"10.1109/INERTIAL53425.2022.9787722","DOIUrl":null,"url":null,"abstract":"Optical gyroscopes, which exploit the Sagnac effect, are one of the preferred choices for high-resolution sensing of angular velocity. However, their miniaturization and integration for high-resolution sensing is still a challenge in optoelectronics research. In fact, in interferometric fiber-optic gyroscopes (IFOGs) the sensitivity is proportional to the area enclosed by the fiber-optic sensing coil. Whereas, in resonant fiber-optic gyroscopes (RFOGs) and resonant micro-optical gyroscopes (RMOGs) the sensitivity is proportional to the ratio between the area enclosed by the cavity and the perimeter of the cavity. Non-Hermitian optical architectures (especially with parity-time-symmetric Hamiltonians) have been recently proposed in literature to solve this scaling problem. In this work, an anti-parity-time-symmetric gyroscope has been designed with two resonant cavities, indirectly coupled via an auxiliary bus. At the operating condition of the so-called \"exceptional point\", it is possible to demonstrate that the sensitivity of the gyroscope is independent of the dimensions of the device. Finally, it will be shown that the anti-parity-time-symmetric architectures represent a better choice for angular velocity sensing than the parity-time symmetric version. An enhancement of the sensitivity of several orders of magnitude with respect to standard Sagnac-based gyros with the same footprint is expected.","PeriodicalId":435781,"journal":{"name":"2022 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indirectly-coupled optical resonators for anti-parity-time-symmetric gyroscopes\",\"authors\":\"Martino De Carlo, F. De Leonardis, F. Dell’Olio, Pietro Peliti, Fabrizio Berton, Mario Lucchesini, V. Passaro\",\"doi\":\"10.1109/INERTIAL53425.2022.9787722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical gyroscopes, which exploit the Sagnac effect, are one of the preferred choices for high-resolution sensing of angular velocity. However, their miniaturization and integration for high-resolution sensing is still a challenge in optoelectronics research. In fact, in interferometric fiber-optic gyroscopes (IFOGs) the sensitivity is proportional to the area enclosed by the fiber-optic sensing coil. Whereas, in resonant fiber-optic gyroscopes (RFOGs) and resonant micro-optical gyroscopes (RMOGs) the sensitivity is proportional to the ratio between the area enclosed by the cavity and the perimeter of the cavity. Non-Hermitian optical architectures (especially with parity-time-symmetric Hamiltonians) have been recently proposed in literature to solve this scaling problem. In this work, an anti-parity-time-symmetric gyroscope has been designed with two resonant cavities, indirectly coupled via an auxiliary bus. At the operating condition of the so-called \\\"exceptional point\\\", it is possible to demonstrate that the sensitivity of the gyroscope is independent of the dimensions of the device. Finally, it will be shown that the anti-parity-time-symmetric architectures represent a better choice for angular velocity sensing than the parity-time symmetric version. An enhancement of the sensitivity of several orders of magnitude with respect to standard Sagnac-based gyros with the same footprint is expected.\",\"PeriodicalId\":435781,\"journal\":{\"name\":\"2022 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INERTIAL53425.2022.9787722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INERTIAL53425.2022.9787722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用Sagnac效应的光学陀螺仪是高分辨率角速度传感的首选之一。然而,它们的小型化和高分辨率传感的集成化仍然是光电子学研究的一个挑战。实际上,在干涉式光纤陀螺仪(IFOGs)中,灵敏度与光纤传感线圈所包围的面积成正比。而在谐振式光纤陀螺仪和谐振式微光陀螺仪中,灵敏度与腔所包围的面积与腔周长之比成正比。非厄米光学体系结构(特别是具有奇偶时间对称的哈密顿量)最近在文献中被提出来解决这个缩放问题。在这项工作中,设计了一个具有两个谐振腔的反宇称时间对称陀螺仪,通过辅助总线间接耦合。在所谓的“异常点”的操作条件下,有可能证明陀螺仪的灵敏度与设备的尺寸无关。最后,将证明反奇偶时间对称架构比奇偶时间对称版本代表了更好的角速度感知选择。与具有相同足迹的基于sagnac的标准陀螺仪相比,预期灵敏度将提高几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indirectly-coupled optical resonators for anti-parity-time-symmetric gyroscopes
Optical gyroscopes, which exploit the Sagnac effect, are one of the preferred choices for high-resolution sensing of angular velocity. However, their miniaturization and integration for high-resolution sensing is still a challenge in optoelectronics research. In fact, in interferometric fiber-optic gyroscopes (IFOGs) the sensitivity is proportional to the area enclosed by the fiber-optic sensing coil. Whereas, in resonant fiber-optic gyroscopes (RFOGs) and resonant micro-optical gyroscopes (RMOGs) the sensitivity is proportional to the ratio between the area enclosed by the cavity and the perimeter of the cavity. Non-Hermitian optical architectures (especially with parity-time-symmetric Hamiltonians) have been recently proposed in literature to solve this scaling problem. In this work, an anti-parity-time-symmetric gyroscope has been designed with two resonant cavities, indirectly coupled via an auxiliary bus. At the operating condition of the so-called "exceptional point", it is possible to demonstrate that the sensitivity of the gyroscope is independent of the dimensions of the device. Finally, it will be shown that the anti-parity-time-symmetric architectures represent a better choice for angular velocity sensing than the parity-time symmetric version. An enhancement of the sensitivity of several orders of magnitude with respect to standard Sagnac-based gyros with the same footprint is expected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信