基于CNSVM的印地语和旁遮普语连续语音识别

Vishal Passricha, Shubhanshi Singhal
{"title":"基于CNSVM的印地语和旁遮普语连续语音识别","authors":"Vishal Passricha, Shubhanshi Singhal","doi":"10.4018/ijapuc.2019100101","DOIUrl":null,"url":null,"abstract":"CNNs are playing a vital role in the field of automatic speech recognition. Most CNNs employ a softmax activation layer to minimize cross-entropy loss. This layer generates the posterior probability in object classification tasks. SVMs are also offering promising results in the field of ASR. In this article, two different approaches: CNNs and SVMs, are combined together to propose a new hybrid architecture. This model replaces the softmax layer, i.e. the last layer of CNN by SVMs to effectively deal with high dimensional features. This model should be interpreted as a special form of structured SVM and named the Convolutional Neural SVM. (CNSVM). CNSVMs incorporate the characteristics of both models which CNNs learn features from the speech signal and SVMs classify these features into corresponding text. The parameters of CNNs and SVMs are trained jointly using a sequence level max-margin and sMBR criterion. The performance achieved by CNSVM on Hindi and Punjabi speech corpus for word error rate is 13.43% and 15.86%, respectively, which is a significant improvement on CNNs.","PeriodicalId":145240,"journal":{"name":"Int. J. Adv. Pervasive Ubiquitous Comput.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hindi and Punjabi Continuous Speech Recognition Using CNSVM\",\"authors\":\"Vishal Passricha, Shubhanshi Singhal\",\"doi\":\"10.4018/ijapuc.2019100101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CNNs are playing a vital role in the field of automatic speech recognition. Most CNNs employ a softmax activation layer to minimize cross-entropy loss. This layer generates the posterior probability in object classification tasks. SVMs are also offering promising results in the field of ASR. In this article, two different approaches: CNNs and SVMs, are combined together to propose a new hybrid architecture. This model replaces the softmax layer, i.e. the last layer of CNN by SVMs to effectively deal with high dimensional features. This model should be interpreted as a special form of structured SVM and named the Convolutional Neural SVM. (CNSVM). CNSVMs incorporate the characteristics of both models which CNNs learn features from the speech signal and SVMs classify these features into corresponding text. The parameters of CNNs and SVMs are trained jointly using a sequence level max-margin and sMBR criterion. The performance achieved by CNSVM on Hindi and Punjabi speech corpus for word error rate is 13.43% and 15.86%, respectively, which is a significant improvement on CNNs.\",\"PeriodicalId\":145240,\"journal\":{\"name\":\"Int. J. Adv. Pervasive Ubiquitous Comput.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Adv. Pervasive Ubiquitous Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijapuc.2019100101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Adv. Pervasive Ubiquitous Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijapuc.2019100101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

cnn在语音自动识别领域起着至关重要的作用。大多数cnn采用softmax激活层来最小化交叉熵损失。该层生成目标分类任务中的后验概率。支持向量机在自动识别领域也取得了可喜的成果。在本文中,两种不同的方法:cnn和svm结合在一起,提出了一种新的混合架构。该模型用svm代替了CNN的最后一层softmax层,有效地处理了高维特征。该模型可以理解为结构化支持向量机的一种特殊形式,并将其命名为卷积神经支持向量机。(CNSVM)。cnsvm结合了两种模型的特征,cnn从语音信号中学习特征,svm将这些特征分类到相应的文本中。采用序列级最大裕度和sMBR准则对cnn和svm的参数进行联合训练。CNSVM在印地语和旁遮普语语音语料库上的单词错误率分别为13.43%和15.86%,较cnn有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hindi and Punjabi Continuous Speech Recognition Using CNSVM
CNNs are playing a vital role in the field of automatic speech recognition. Most CNNs employ a softmax activation layer to minimize cross-entropy loss. This layer generates the posterior probability in object classification tasks. SVMs are also offering promising results in the field of ASR. In this article, two different approaches: CNNs and SVMs, are combined together to propose a new hybrid architecture. This model replaces the softmax layer, i.e. the last layer of CNN by SVMs to effectively deal with high dimensional features. This model should be interpreted as a special form of structured SVM and named the Convolutional Neural SVM. (CNSVM). CNSVMs incorporate the characteristics of both models which CNNs learn features from the speech signal and SVMs classify these features into corresponding text. The parameters of CNNs and SVMs are trained jointly using a sequence level max-margin and sMBR criterion. The performance achieved by CNSVM on Hindi and Punjabi speech corpus for word error rate is 13.43% and 15.86%, respectively, which is a significant improvement on CNNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信